Medulla oblongata dominated synaptic density network degeneration in amyotrophic lateral sclerosis.

Neuroimage Clin

Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, PR China; Key Laboratory of Biological Nanotechnology of National Health Commi

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a brain network disorder closely associated with synaptic loss in the upper and lower motor neurons. However, the in vivo synaptic network changes and their progressive processes remain unclear. Here, we aim to investigate the synaptic density network connectivity and the likely sequences of synaptic loss in patients with ALS.

Methods: We examined data from 21 patients diagnosed with ALS and 25 sex- and age-matched healthy controls (HCs) who underwent PET imaging with the SV2A radioligand [F]SynVesT-1. The individual synaptic density similarity network was constructed for each patient by calculating the similarity between interregional synaptic density distributions. The synaptic network connectivity changes were investigated, followed by an examination of the local synaptic density in regions that showed significant network alterations. Finally, we constructed the voxel-wise and ROI-wise causal synaptic covariance network (cSCN) by applying Granger causality analysis. This allowed us to identify the sequence of synaptic loss in these brain regions.

Results: We observed an overall decrease in synaptic density network connectivity in ALS patients compared to controls, with the highest nodal degree in the right medulla oblongata. Specifically, the reduced connections were dominantly between the medulla oblongata and the striatum, frontal lobe, occipital lobe, as well as between the striatum and the frontal lobe, occipital lobe. Furthermore, patients with ALS displayed significantly synaptic loss in those brain regions. The cSCN analyses showed that as the disease progresses, the cortical synaptic loss sequences of ALS extend from the medulla oblongata to the regions including the striatum, frontal lobe, occipital lobe, and parietal lobe.

Conclusions: These findings suggest that synaptic density network degeneration in ALS may follow a bottom-up transmission pattern, primarily involving in the medulla oblongata-striatum-neocortex network, which have the potential to capture new network-based targets for clinical therapy in the progression of ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216726PMC
http://dx.doi.org/10.1016/j.nicl.2025.103814DOI Listing

Publication Analysis

Top Keywords

synaptic density
28
synaptic loss
20
medulla oblongata
16
density network
16
synaptic
15
network connectivity
12
striatum frontal
12
frontal lobe
12
lobe occipital
12
occipital lobe
12

Similar Publications

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Potential Mechanism Connecting Preeclampsia to Autism Spectrum Disorder in Offspring: The Role of Microglial Abnormalities.

Front Biosci (Landmark Ed)

August 2025

Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 200011 Shanghai, China.

Preeclampsia (PE) is a serious complication of pregnancy characterized by chronic inflammation and immune dysregulation, which significantly increases the risk of neurodevelopmental disorders in offspring, including the autism spectrum disorder (ASD). This review investigated the potential mechanisms linking PE to ASD, with a particular focus on the role of microglial abnormalities. Epidemiological studies have revealed that prenatal exposure to PE raised the risk of ASD, with affected offspring showing increased odds ratios.

View Article and Find Full Text PDF

The role of REST in regulating the BDNF/TrkB signalling pathway in nano-alumina induced cognitive dysfunction in zebrafish.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Synaptic plasticity is fundamental for cognitive development and brain function. Aluminium nanoparticles (AlNPs), widely used in industrial and consumer products, pose potential neurotoxic risks, particularly during early neurodevelopment. However, their effects on synaptic plasticity and cognitive outcomes remain poorly understood.

View Article and Find Full Text PDF

A nanometer-scale multilayer gate insulator (GI) engineering strategy is introduced to simultaneously enhance the on-current and bias stability of amorphous InGaZnO thin-film transistors (a-IGZO TFTs). Atomic layer deposition supercycle modifications employ alternating layers of AlO, TiO, and SiO to optimize the gate-oxide stack. Each GI material is strategically selected for complementary functionalities: AlO improves the interfacial quality at both the GI/semiconductor and GI/metal interfaces, thereby enhancing device stability and performance; TiO increases the overall dielectric constant; and SiO suppresses leakage current by serving as a high-energy barrier between AlO and TiO.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF