Publications by authors named "Jingqi Yan"

Dysregulated spine morphology is a common feature in pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Levan, a fructan-type polysaccharide with diverse applications in food, pharmaceuticals, and biotechnology, has garnered significant attention for its functional properties, such as prebiotic, immunomodulatory, antioxidant, and antimicrobial activities. In this study, the effects of fermentation temperature, sucrose concentration, and incubation time on the molecular weight of levan produced by Bacillus licheniformis fermentation were investigated. The results showed that as the temperature (37°C-50°C) and sucrose concentration (300-500 g l-1) increased, the molecular weight of levan produced by the strain during fermentation decreased.

View Article and Find Full Text PDF

Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders.

View Article and Find Full Text PDF

Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy.

View Article and Find Full Text PDF

Aging is a systemic process, which is a risk factor for impaired physiological functions, and finally death. The molecular mechanisms driving aging process and the associated cognitive decline are not fully understood. The hypothalamus acts as the arbiter that orchestrates systemic aging through neuroinflammatory signaling.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription.

View Article and Find Full Text PDF

Neural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment.

View Article and Find Full Text PDF

Unlabelled: Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum.

View Article and Find Full Text PDF

In neurons, autophagy is crucial to proper axon guidance, vesicular release, dendritic spine architecture, spine pruning and synaptic plasticity and, when dysregulated, is associated with brain disorders, including autism spectrum disorders, and neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Once thought to play a housekeeping function of removing misfolded proteins or compromised organelles, neuronal autophagy is now regarded as a finely tuned, real time surveillance and clearance system crucial to synaptic integrity and function. Here we review the role of autophagy in synaptic plasticity and its regulation by epigenetic mechanisms.

View Article and Find Full Text PDF

Deaf and hard of hearing (DHH) students tend to experience delayed development of grammatical skills in written language. However, much remains unknown about the mechanism behind this phenomenon. In the present study, the researchers used a self-paced moving-window reading task to investigate DHH students' understanding of causal and adversative connectives in Chinese.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most frequent form of heritable intellectual disability and autism. Fragile X (-KO) mice exhibit aberrant dendritic spine structure, synaptic plasticity, and cognition. Autophagy is a catabolic process of programmed degradation and recycling of proteins and cellular components via the lysosomal pathway.

View Article and Find Full Text PDF

The microarray data generated and analysed in this Article have been uploaded to the Gene Expression Omnibus (GEO) under accession number GSE113383 . Accordingly, the 'Data availability' section of the Methods of the original Article has been rephrased online.

View Article and Find Full Text PDF

It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan.

View Article and Find Full Text PDF

Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model.

View Article and Find Full Text PDF

Innate immunological signals induced by pathogen- and/or damage-associated molecular patterns are essential for adaptive immune responses, but it is unclear if the brain has a role in this process. Here we found that while the abundance of tumor-necrosis factor (TNF) quickly increased in the brain of mice following bacterial infection, intra-brain delivery of TNF mimicked bacterial infection to rapidly increase the number of peripheral lymphocytes, especially in the spleen and fat. Studies of various mouse models revealed that hypothalamic responses to TNF were accountable for this increase in peripheral lymphocytes in response to bacterial infection.

View Article and Find Full Text PDF

Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels.

View Article and Find Full Text PDF

The brain, in particular the hypothalamus, plays a role in regulating glucose homeostasis; however, it remains unclear whether this organ is causally and etiologically involved in the development of diabetes. Here, we found that hypothalamic transforming growth factor-β (TGF-β) production is excessive under conditions of not only obesity but also aging, which are two general etiological factors of type 2 diabetes. Pharmacological and genetic approaches revealed that central TGF-β excess caused hyperglycemia and glucose intolerance independent of a change in body weight.

View Article and Find Full Text PDF

Neural stem cells (NSCs) were recently revealed to exist in the hypothalamus of adult mice. Here, following our observation showing that a partial loss of hypothalamic NSCs caused weight gain and glucose intolerance, we studied if NSCs-based cell therapy could be developed to control these disorders. While hypothalamus-implanted NSCs failed to survive in mice with obesity, NF-κB inhibition induced survival and neurogenesis of these cells, leading to effects in counteracting obesity and glucose intolerance.

View Article and Find Full Text PDF

Stroke is a leading cause of adult morbidity and mortality with very limited treatment options. Evidence from preclinical models of ischemic stroke has demonstrated that the antioxidant N-acetylcysteine (NAC) effectively protects the brain from ischemic injury. Here, we evaluated a new pathway through which NAC exerted its neuroprotection in a transient cerebral ischemia animal model.

View Article and Find Full Text PDF

Epidemiological evidence and experimental studies suggest that drinking green tea is associated with a lower risk of obesity and related diseases. However, the mechanisms of these effects are not clear. In the present study, we investigated the anti-obesity mechanisms of green tea catechins (GTCs) through modulation of peroxisome proliferator activated-receptor (PPAR) pathways in high-fat diet-induced obesity in rats.

View Article and Find Full Text PDF

Diabetes is considered a major risk factor for stroke and is associated with worsened stroke outcomes. Here, we discuss and summarize the mechanisms that have been associated with the increased risk of stroke due to the hyperglycemia in diabetes mellitus. In diabetic stroke models, hyperglycemia exaggerates the following damaging processes: acidosis, accumulation of reactive oxygen species/reactive nitrogen, inflammation and mitochondrial dysfunction.

View Article and Find Full Text PDF

In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHβE). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice.

View Article and Find Full Text PDF

This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm.

View Article and Find Full Text PDF