The Escherichia coli RelB antitoxin C terminus is essential for RelE toxin suppression and transcriptional repression.

J Biol Chem

Department of Chemistry, Emory University, Atlanta, Georgia, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial type II toxin-antitoxin (TA) systems exhibit high specificity within each pair to ensure precise recognition of the toxin by its cognate antitoxin to inhibit toxicity of the free toxin. Despite high structural similarity among some TAs, crosstalk between noncognate TA pairs is rare. To determine how the Escherichia coli RelB antitoxin suppresses its cognate RelE toxin, we engineered C-terminal truncations of RelB and tested their functional effects on toxin suppression in E. coli. We find that removal of the long C-terminal α3 and connecting loop 4 of RelB prevents RelE suppression. Quantitative binding assays of RelE and RelB variants support a reduced affinity upon removal of the RelB C terminus. Disrupting these interactions between RelB and RelE also led to a significant decrease in transcriptional repression at the relBrelE DNA operator (relO), underscoring the requirement for RelE binding to RelB for optimal repression at DNA repressor elements. Comparison to other structurally homologous TA systems, such as E. coli DinJ-YafQ, reveals key differences in the molecular mechanisms of both toxin suppression and DNA repressor activity highlighting the diversity in TA regulation and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301738PMC
http://dx.doi.org/10.1016/j.jbc.2025.110389DOI Listing

Publication Analysis

Top Keywords

toxin suppression
12
escherichia coli
8
relb
8
coli relb
8
relb antitoxin
8
rele toxin
8
transcriptional repression
8
dna repressor
8
rele
6
toxin
6

Similar Publications

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF

Efficacy of Ginkgo biloba extract in controlling patulin production by Penicillium expansum in sweet cherries.

Food Res Int

November 2025

SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:

Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).

View Article and Find Full Text PDF

IMRC-Exo mitigates venom-induced limb injury in rabbits by inhibiting GSDME-dependent pyroptosis.

J Venom Anim Toxins Incl Trop Dis

September 2025

Department of Emergency, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, China.

Background: Inflammation plays a critical role in the pathogenesis of limb injury caused by snakebite. Investigating its regulatory mechanisms and intervention strategies may help identify effective treatments. Recent studies have shown that pyroptosis exacerbates organ damage by amplifying inflammatory responses.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF