98%
921
2 minutes
20
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs). mRNA and protein were quantified by reverse transcription quantitative PCR (RT-qPCR). was overexpressed via plasmid transfection, then inflammatory cytokines, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS), and oxidative-phosphorylation proteins, including voltage-dependent anion channel 1 (VDAC1), cytochrome c oxidase subunit 1 (COX1), and ATP synthase α subunit (ATP5A), were assayed by Western blot, enzyme-linked immunosorbent assay (ELISA), and flow cytometry. Immunoprecipitation plus mass spectrometry, co-immunoprecipitation, and immunofluorescence confirmed the interaction between Sparc and ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52). Effects of overexpression alone or combined with small interfering RNA (si-) were compared in LPS-induced BV2 cells. Finally, BV2 cells and a mouse hippocampal neuron (HT-22) were co-cultured in the Transwell chamber, and the changes in proliferation, apoptosis, and III-tubulin content of the latter were detected.
Results: In LPS-induced BV2 cells, the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and ROS levels were elevated, while the IL-10 and transforming growth factor-β (TGF-β) levels, Δψm, and the proteins levels of the VDAC1, COX1, ATP5A, and Sparc decreased. overexpression reversed these changes. Mechanistically, Sparc bound Uba52 and upregulated its expression; knockdown abolished the anti-inflammatory and mitochondrial-protective effects of Sparc. In co-culture, overexpression rescued HT-22 neurons apoptosis and enhanced axonal growth, but the effects were also reversed by knockdown.
Conclusions: Sparc may maintain mitochondrial homeostasis by interacting with Uba52 to inhibit LPS-induced BV2 inflammatory response, thereby promoting neuronal axonal regeneration. This suggests that Sparc may play a potential role in SCI repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL42005 | DOI Listing |
Front Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Spine Surgery, Zhongda Hospital Southeast University, 210009 Nanjing, Jiangsu, China.
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).
CNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye.
Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. Electronic address:
Ethnopharmacological Relevance: Jiao-tai-wan (JTW) is a classical traditional Chinese medicine formula that has long been used to treat insomnia. Recent pharmacological studies have highlighted its potential antidepressant effects. However, its role in regulating neuroinflammation associated with depression and the underlying mechanisms remains unclear.
View Article and Find Full Text PDF