Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polydimethylsiloxane (PDMS) is extensively utilized for the recovery of bio-alcohols, but it encounters significant obstacles in volatile organic compounds (VOCs) removal, because of the narrow size for molecules diffusion. In this work, we designed a high-efficiency diffusion channel by introducing phenyl as a spacer into PDMS chains. The monomer divinylbenzene and vinyl-terminated PDMS (vinyl-PDMS) can be chemically crosslinked with thiol-grafted PDMS (thiol-PDMS) based on thiol-ene click reaction. The result shows that the free volume radius ( , ) has a significant increase after the introduction of divinylbenzene as a spacer, which is beneficial to the transport of phenol diffusion. After a series of optimizations involving the divinylbenzene content, pervaporation (PV) operating temperature, photoinitiator content, and viscosity of vinyl-PDMS, the prepared phenyl-PDMS showed an excellent PV performance for phenol recovery containing 10.9 of separation factor and 3959.66 g m h of flux as separating 0.1 wt% of phenol/water solution at 70°C. This separation performance is significantly higher than the unmodified PDMS membrane, that is, 2.05 times higher in separation factor and 3.54 times higher in flux. This study provides an effective structure design for the removal of aromatic compounds by enlarging diffusion channels and will make a great contribution to biological medicine and bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178221PMC
http://dx.doi.org/10.1002/elsc.70030DOI Listing

Publication Analysis

Top Keywords

pdms membrane
8
phenol recovery
8
separation factor
8
times higher
8
pdms
6
membrane phenyl
4
phenyl rigid
4
rigid molecular
4
molecular spacer
4
spacer phenol
4

Similar Publications

In this study, a silicon carbide (SiC) mixed-matrix membrane for oil-water separation was successfully fabricated within the nanofiltration range. Silicon carbide was synthesized using rice husk ash (RHA), an agricultural waste material, combined with polydimethylsiloxane (PDMS) and subsequently incorporated into a mixed matrix membrane for oil-water separation. Polysulfone (PSF) and polyvinylpyrrolidone (PVP) were employed as polymer supports for fabricating the SiC-based mixed matrix membrane, which was tested in a dead-end filtration setup.

View Article and Find Full Text PDF

In this study, a multifunctional composite membrane (PDMS@CNT@COF@CF) integrating superhydrophobic, efficient photo-thermal conversion, and electrical insulation properties was developed through a functional co-design strategy. The material was constructed by depositing a covalent organic framework (COF) on the surface of carbon nanotube (CNT) via room temperature in situ polymerization. It was then robustly anchored onto a cotton fabric (CF) substrate through polydimethylsiloxane (PDMS) coating.

View Article and Find Full Text PDF

Porous Janus membrane for ultrasensitive detection and efficient degradation of sulfur mustard simulant.

J Hazard Mater

August 2025

Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China. Electronic address:

The development of integrated systems for simultaneous chemical threat detection and decontamination is hindered by inherent sensitivity-efficiency trade-offs. We address this challenge through interfacial engineering of a Janus membrane combining D-A molecule functionalized MOFs with PDMS. A gas-liquid interfacial self-assembly strategy enables the creation of a microporous PDMS top layer for vapor preconcentration and vertically aligned MOF nanochannels (2.

View Article and Find Full Text PDF

Mechano-Gated Nanofluidic Piezomemristor: Elastic Nanochannel Bridging Dynamic Pressure Modulation and Neuromorphic Plasticity.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory for Design and Manufacture of Precision Medicine Equipment, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.

Nanofluidic memristors have become a hotspot in neuromorphic computing research due to their potential in modeling biological synaptic functions. However, many existing nanofluidic memristors rely on electrochemical or electric field-driven mechanisms, failing to directly mimic the properties of mechanically gated ion channels (e.g.

View Article and Find Full Text PDF

Microfluidic devices with built-in microvalves hold particular promise for minimizing sample volume requirements while automating sample preparation workflows. Such devices have typically been implemented in polydimethyl siloxane (PDMS) using multi-layer soft lithography. Both the material and assembly process of devices present challenges for scalable manufacturing and limit utilization of microfluidic automation at the point of care.

View Article and Find Full Text PDF