Single-cell chromatin accessibility profiling reveals regulatory mechanisms and evolution in pig brains.

BMC Biol

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, P.R. China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pig brains serve as a valuable biomedical model for studying brain-related diseases due to their significant structural similarities to the human brain. Furthermore, the long-term domestication and artificial selection of domestic pigs have profoundly shaped their brains, making them an interesting subject for research. However, a comprehensive understanding of the regulatory mechanisms governing pig brain function and their impact on various phenotypes remains elusive due to the high degree of cellular heterogeneity present in the brain.

Results: In this study, we profiled 71,798 cells from domestic pig and wild boar cerebral cortex and cerebellum, identifying nine cell types, and integrated single-cell RNA sequencing data to explore cell type-specific regulatory landscapes and oligodendrocyte developmental trajectory. Furthermore, comparative analysis of each cell type between domestic pigs and wild boars indicated that oligodendrocyte progenitor cells may potentially exhibit a faster evolutionary rate. Finally, cross-species analysis suggested that, compared to humans, the proportion of sequence-conserved and functionally conserved regulatory elements in each cell type appears to be higher in pigs than in mice. Studies on the enrichment of genetic variants associated with 15 human diseases and complex traits in conserved regulatory elements across cell types indicated that immune-related diseases were more enriched in pigs, whereas neurological diseases were somewhat more enriched in mice. However, the enrichment of Alzheimer's disease-associated variants in pigs but not in mice suggests that pigs could be a more suitable model for this condition.

Conclusions: Our research offers preliminary insights into the heterogeneity of pig brains and suggests the potential underlying regulatory mechanisms. Additionally, we explore the possible impact of nervous system differences on phenotypic changes, which could lay the groundwork for further biomedical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150449PMC
http://dx.doi.org/10.1186/s12915-025-02263-2DOI Listing

Publication Analysis

Top Keywords

regulatory mechanisms
12
pig brains
12
domestic pigs
8
cell types
8
cell type
8
conserved regulatory
8
regulatory elements
8
elements cell
8
pigs mice
8
diseases enriched
8

Similar Publications

Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.

Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.

View Article and Find Full Text PDF

The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.

View Article and Find Full Text PDF

Targeting Tregs in T1DM: bridging heterogeneity, mechanisms, and clinical progress.

Trends Pharmacol Sci

September 2025

Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manch

Regulatory T cells (Tregs) play a pivotal role in maintaining immune tolerance and sustaining immunological homeostasis. Emerging evidence indicates that Treg characteristics and functional alterations can significantly contribute to the pathogenesis of autoimmune diseases including type 1 diabetes mellitus (T1DM). Notably, recent studies have established a positive correlation between diminished numbers of Tregs and the onset of T1DM.

View Article and Find Full Text PDF

The fraction that the elderly represent in the world's population is growing rapidly; numerous alterations that impact all organs and systems, including the immune system, are related to aging. A complex process common in the elderly, known as immunosenescence, is characterized by a decreased ability to respond to vaccination as well as an increased risk of bacterial and viral infections, autoimmune, cardiovascular and neurodegenerative diseases. These processes are associated with alterations in the innate and adaptive immune system and lead to a condition of chronic low-grade inflammation, referred to as inflammaging.

View Article and Find Full Text PDF

Effects of microbial infection on key gene expression in the Toll signaling pathway and immune response in Myzus persicae.

Pestic Biochem Physiol

November 2025

Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.

The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.

View Article and Find Full Text PDF