98%
921
2 minutes
20
Regulatory T cells (Tregs) play a pivotal role in maintaining immune tolerance and sustaining immunological homeostasis. Emerging evidence indicates that Treg characteristics and functional alterations can significantly contribute to the pathogenesis of autoimmune diseases including type 1 diabetes mellitus (T1DM). Notably, recent studies have established a positive correlation between diminished numbers of Tregs and the onset of T1DM. Although targeting Tregs has emerged as an attractive therapeutic strategy for T1DM, the heterogeneity and mechanistic complexities of Tregs remain largely unexplored and limit clinical success. We explore the dynamic alterations of Treg frequencies and phenotypes, and discuss their regulatory mechanisms throughout T1DM progression. Furthermore, we provide an overview of preclinical studies and clinical trials targeting Tregs in T1DM. By addressing translational challenges and current limitations in clinical efficacy, the ultimate aim is to develop innovative immunotherapeutic interventions for T1DM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tips.2025.08.004 | DOI Listing |
Oncol Res
September 2025
Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).
View Article and Find Full Text PDFJ Pain Res
September 2025
Department of Pain, Zhejiang Jiashan County First People's Hospital, Jiaxing, Zhejiang, People's Republic of China.
Background: Parkinson's disease (PD) is a common neurodegenerative disorder of the central nervous system. Neuropathic pain (NP) is a type of symptom that is often overlooked but significantly affects the quality of life of patients. Its etiology is complex, and the specific molecular mechanism is still unclear.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Immune cell metabolism is essential for regulating immune responses, including activation, differentiation, and function. Through glycolysis and oxidative phosphorylation (OXPHOS), metabolism supplies energy and key intermediates for cell growth and proliferation. Importantly, some metabolites generated during these processes act as signaling molecules that influence immune activity.
View Article and Find Full Text PDFImmune Netw
August 2025
Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea.
Developmental and epileptic encephalopathies (DEEs), including Infantile Epileptic Spasms Syndrome (IESS) and Lennox-Gastaut Syndrome (LGS), are severe pediatric conditions characterized by profound developmental delays and treatment-resistant epilepsy. Although steroid therapies provide some clinical benefits, the underlying immunological mechanisms remain poorly understood. In this study, we performed comprehensive immune profiling using multi-parametric flow cytometry on PBMCs from IESS (n=25) and LGS (n=9) patients, comparing them with age-matched healthy controls (n=54).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Division of Life Sciences and Department of Life Science, Graduate School, CHA University, 13488 Seongnam-si, Gyeonggi-do, Republic of Korea.
Background: Parkinson's disease (PD) is characterized by a progressive decline in dopaminergic neurons within the substantia nigra (SN). Although its underlying cause has yet to be fully elucidated, accumulating evidence suggests that neuroinflammation contributes substantially to disease development. Treatment strategies targeting neuroinflammation could improve PD outcomes.
View Article and Find Full Text PDF