98%
921
2 minutes
20
Screen printing and inkjet printing are attractive processes to produce low-cost and mass producible electroanalytical sensors. Despite important advances in the field, obtaining a printed electrochemical reference element that satisfies analytical requirements has not yet been realized satisfactorily. This paper investigates the use of screen printing and inkjet printing to produce a self-contained, all-solid state reference element that can be integrated with a wide range of electroanalytical sensing principles. The principle relies on a silver/silver iodide element that self-generates its potential by the application of a so-called pulstrode protocol. Specifically, a defined quantity of iodide is released by a short cathodic current pulse, and the reference potential defined by the released iodide is subsequently recorded at zero current. Both screen and inkjet-printed reference electrodes are fabricated and characterized, and the methodology optimized and assessed. As an application example, a single-point calibration method is used to quantify ions in undiluted filtered urine samples by potentiometry. The screen-printing approach was less successful owing to the low purity of the silver ink used. The inkjet printing approach allowed one to quantify chloride and sodium in urine. Using a conventional silver/silver chloride reference electrode as standard, relative errors of respectively 7.7 and 14.1% for chloride and sodium were obtained. While the approach would benefit from further optimization for long term applications, especially the use of high purity silver inks, it is a promising strategy for the realization of fully integrated all-solid-state microfabricated sensing systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132089 | PMC |
http://dx.doi.org/10.1039/d5sd00024f | DOI Listing |
ACS Appl Mater Interfaces
September 2025
State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Achieving uniform perovskite thin films via inkjet printing remains a significant challenge due to the pervasive coffee-ring effect. Here, we present a solute engineering strategy that incorporates shape-anisotropic perovskite nanorods into a single-solvent ink formulation, effectively suppressing coffee-ring formation and yielding ultraflat films with an average roughness (Ra) as low as 0.226 nm.
View Article and Find Full Text PDFTalanta
September 2025
Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:
Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Smart Health Science and Technology, Kangwon National University (KNU), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.
Microneedle (MN) technology offers a minimally invasive, patient-friendly alternative to conventional hypodermic injections for dermal drug delivery. However, traditional micro-molding techniques are limited by single-material fabrication, involving labor-intensive processes, excessive material waste, and scalability issues, restricting broader therapeutic applications. To address these challenges, an inkjet printing method is implemented to fabricate multi-material MN patches using gelatin and gelatin methacryloyl (GelMA) hydrogels.
View Article and Find Full Text PDFNat Commun
August 2025
Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy.
Scalable and high-throughput platforms to non-invasively record the Action Potentials (APs) of excitable cells are highly demanded to accelerate disease diagnosis and drug discovery. AP recordings are typically achieved with the invasive and low-throughput patch clamp technique. Non-invasive alternatives like planar multielectrode arrays cannot record APs without membrane poration, preventing accurate measurements of disease states and drug effects.
View Article and Find Full Text PDFAppl Radiat Isot
August 2025
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
Quantitative imaging of alpha-emitting radionuclides is essential for accurate dosimetry in radiopharmaceutical therapy (RPT). This study evaluates the performance of inkjet-deposited Am sources imaged with the ionizing-radiation Quantum Imaging Detector (iQID), focusing on spatial resolution, substrate effects, and activity recovery. Line and areal phantom patterns were printed onto stainless steel, nickel, and gold-coated nickel substrates.
View Article and Find Full Text PDF