Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ferroptosis plays a role in wound healing during the maturation of senescent endothelial cells. This study explores the modulation of ferroptosis in senescent human umbilical vein endothelial cells (HUVECs) and wound-healing processes by Piezo1 activation at the molecular, cellular, and tissue levels. Elevated Piezo1 expression was observed in HUVECs treated with the senescence inducer doxorubicin (Doxo) and the ferroptosis inducer erastin and in aged wound tissue. Pharmacological inhibition or knockdown of Piezo1 protected senescent HUVECs and aged wound tissue from ferroptosis. Additionally, Piezo1 channel activity was found to promote ferroptosis in senescent HUVECs by increasing intracellular Ca levels. The calmodulin-dependent kinase II (CaMKII)/activating transcription factor 3 (ATF3)/SLC7A11 signaling axis was activated upon stimulation with erastin and Doxo, driving Piezo1-induced ferroptosis. CaMKII directly interacted with ATF3, which could be modulated through Piezo1 channel regulation. Notably, Piezo1 knockout mice or adeno-associated virus 9-mediated silencing of ATF3 attenuated ferroptosis in senescent cells and accelerated wound repair. Mechanistically, both genetic and pharmacological inhibition of Piezo1 promoted wound healing in aged tissues and regulated ferroptosis in senescent HUVECs through the CaMKII/ATF3/SLC7A11 pathway. In conclusion, these findings suggest that targeting Piezo1-mediated ferroptosis in senescent HUVECs offers a promising therapeutic approach for improving wound healing in the elderly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133029PMC
http://dx.doi.org/10.34133/research.0718DOI Listing

Publication Analysis

Top Keywords

ferroptosis senescent
20
wound healing
16
senescent huvecs
16
ferroptosis
9
piezo1-mediated ferroptosis
8
transcription factor
8
endothelial cells
8
aged wound
8
wound tissue
8
pharmacological inhibition
8

Similar Publications

Ferroptosis has been implicated in skeletal muscle aging. Nevertheless, specific ferroptosis-related genes (FRGs) governing skeletal muscle aging remain unclear. The aim of this study was to identify ferroptosis-related marker genes associated with skeletal muscle aging, uncovering potential therapeutic targets for skeletal muscle aging.

View Article and Find Full Text PDF

Cellular systems responsible for the formation and removal of reactive oxygen species (ROS), functioning within physiological limits, are essential for maintaining intracellular redox balance. This state is known as oxidative eustress. Key redox signaling molecules, such as superoxide anion radical (O) and hydrogen peroxide (HO), operate at nanomolar concentrations and are produced by NADPH oxidases (regulated by various factors), the mitochondrial electron transport chain (ETC), and numerous enzymes.

View Article and Find Full Text PDF

Ferroptosis is a newly recognized form of programmed cell death characterized by iron overload-dependent lipid peroxidation. These pathological phenomena are often observed in neurodegenerative diseases. Aging is an irreversible process characterized by the deterioration of tissue and cell function.

View Article and Find Full Text PDF

The multi-dimensional regulatory mechanism of Sirt6 in heart health: From cell death pathways to targeted therapy for cardiovascular diseases.

Biochem Biophys Res Commun

August 2025

Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China. Electronic

Sirtuin 6 (Sirt6) is a member of the Sirtuin family, exhibiting histone deacetylase and ADP-ribosyltransferase activity. This enzyme is involved in several pathways, such as epigenetic regulation and inflammation control. It is essential for preserving cardiac equilibrium and postponing the emergence of cardiovascular disorders.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA), a lysosome-dependent protein degradation pathway, plays a pivotal yet poorly understood role in cellular senescence-related degenerative diseases. Our study sheds light on a novel mechanism whereby UCHL1 plays a crucial role in mitigating nucleus pulposus cell (NPC) senescence and intervertebral disc degeneration (IVDD) by activating CMA to counteract autophagy-dependent ferroptosis. Through sequencing analysis of human samples, we identified UCHL1 as a potential factor influencing disc degeneration.

View Article and Find Full Text PDF