Multi-omics analysis unraveling stemness features associated with oncogenic dedifferentiation in 12 cancers.

Cancer Lett

The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China. Electronic address: lichangzheng012345@1

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumorigenesis is typically accompanied by cellular dedifferentiation and the acquisition of stem cell-like attributes. However, few studies have comprehensively evaluated the putative relationships between these characteristics and various cancers. Here, we integrated gene expression and DNA methylation quantitative trait loci (cis-eQTL and cis-mQTL) data from the blood to perform multi-omics Mendelian randomization analysis. Our analyses revealed 967 stem cell-associated genes (P < 0.05) and 11,262 methylation sites (P < 0.01) significantly related to 12 cancers. SMAD7 (cg14321542) in colon cancer, IGF2 (cg13508136) in prostate cancer, and FADS1 (cg07005513) in rectal cancer were prioritized as candidate causal genes and regulatory elements. Notably, using cis-eQTL data from the corresponding tissue sites, we detected 16 stem cell-associated genes dramatically causally associated with six cancers (FDR<0.2). The gene THBS3 was particularly common in both blood and stomach tissues and exhibited prognostic significance. Furthermore, it was markedly associated with one microbial metabolic pathway and four immunophenotypes. Functional validation using the ECC12 gastric cancer cell line revealed that the inhibition of its expression could accelerate oxidative phosphorylation and reactive oxygen species production, reduce clonal proliferation ability, and promote the apoptosis of stomach tumor cells. Additionally, based on spatial transcriptomic data from gastrointestinal cancers, the results demonstrated the clusters enriched with the most stem cell-associated genes exhibited significantly enhanced tumor-promoting potency, and the THBS3-expressing cells displayed suppressed oxidative phosphorylation. Overall, this study enhances our understanding of tumorigenic mechanisms and aids in the identification of therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2025.217816DOI Listing

Publication Analysis

Top Keywords

multi-omics analysis
4
analysis unraveling
4
unraveling stemness
4
stemness features
4
features associated
4
associated oncogenic
4
oncogenic dedifferentiation
4
dedifferentiation cancers
4
cancers tumorigenesis
4
tumorigenesis typically
4

Similar Publications

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF

RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies.

View Article and Find Full Text PDF

Studies have reported the special value of PANoptosis in cancer, but there is no study on the prognostic and therapeutic effects of PANoptosis in bladder cancer (BLCA). This study aimed to explore the role of PANoptosis in BLCA heterogeneity and its impact on clinical outcomes and immunotherapy response while establishing a robust prognostic model based on PANoptosis-related features. Gene expression profiles and clinical data were collected from public databases.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory disease characterized by complex immune dysregulation in which the identification of key molecular drivers is critical for the advancement of diagnostic and therapeutic approaches. In this study, we integrated transcriptomic data from multiple cohorts and applied three machine learning algorithms-Random forest, support vector machine recursive feature elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO)-to robustly identify key gene, converging on CSF3R as a top candidate. Mendelian randomization (MR) analysis supported a causal role of CSF3R in CD pathogenesis (OR = 1.

View Article and Find Full Text PDF