98%
921
2 minutes
20
Clathrates are guest/host framework compounds composed of polyhedral cages, yet despite their prevalence among tetrahedral network formers, clathrates with a carbon host lattice remain unrealized synthetic targets. Here, we report a type-I carbon-based framework-a ubiquitous clathrate structure type found throughout compounds containing tetrahedral building blocks. Following a boron-stabilization scheme based on first-principles predictions in the Ca-B-C system at high pressure, type-I CaBC ( ≈ 9) was synthesized in the archetypal [Formula: see text] lattice with stability derived from substitutionally disordered boron atoms on hexagonal ring framework positions. The synthesized clathrate, which is recoverable to ambient conditions, expands topological network similarity across tetrahedral systems and opens possibilities for a broad family of diamond-like, carbon-based compounds with tunable properties based on the wide potential for guest/host-atom substitutions and framework versatility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101512 | PMC |
http://dx.doi.org/10.1126/sciadv.adv6867 | DOI Listing |
J Colloid Interface Sci
September 2025
Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200438, China. Electronic address:
We present a coordination-inspired strategy for assembling binary nanocrystal superlattices (BNSLs) using CdSe nanotetrapods as symmetry-encoding building blocks. Exploiting their intrinsic tetrahedral geometry, which mimics the sp hybridization of carbon atoms in a diamond lattice, we encode spatially defined binding sites that guide regioselective coassembly with spherical nanocrystals. By tuning the size ratio between components, we achieve both three-dimensional and two-dimensional BNSLs with long-range structural order.
View Article and Find Full Text PDFIUCrdata
August 2025
Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes), 35042 Rennes France.
The title compound, (CHNO)[SnCl]·2HO, features l-leucinium cations adopting extended conformations, which maximizes the separation between the methyl groups [-CH(CH)] and the polar NH and COOH moieties. Additionally, an intra-molecular hydrogen bond between the ammonium (NH ) group and the carboxyl group induces a slight reduction in the C-C-N bond angles, with an average value of 106.5°, compared to the ideal tetra-hedral angle of 109.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China.
Hydride superconductors have attracted significant attention, yet achieving superconductivity at ambient pressure remains a key challenge. Here, a family of high-T (superconducting critical temperature, T) hydrides based on the fluorite-type AXH structure, exhibiting thermodynamic and dynamic stability at low to atmospheric pressure, is proposed. Through comprehensive screening of 150 ternary systems, eight stable hydrides below 35 GPa are identified.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
We have investigated the effects of varying salt concentrations on the structure of the liquid/vapor interfaces of aqueous solutions of NaNO, Mg(NO), and Ca(NO) salts using molecular dynamics simulations and vibrational sum frequency generation (VSFG) spectral calculations. The current study reveals a weak interfacial propensity of the nitrate ions and formation of an ionic double-layer at the interfaces. The tetrahedral hydrogen bond network is disrupted more by ions in the bulk phase compared to the interface, with the extent of disruption increasing with concentration.
View Article and Find Full Text PDF