98%
921
2 minutes
20
Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation. The design strategies include (i) changing the linkage from amide to imine and (ii) subsequent introduction of shape-persistent units such as triptycene and spirobifluorene. The prepared polyimine membranes exhibit ultrahigh microporosity and enhanced swelling and plasticization resistance compared with conventional polyamide counterparts. These membranes, which feature fast and selective transport of hydrocarbons, including multicomponent and industrially relevant mixtures, outperform commercial and state-of-the-art benchmark membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adv6886 | DOI Listing |
Science
May 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation.
View Article and Find Full Text PDFNat Commun
March 2024
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
The pressing demand for sustainable energy storage solutions has spurred the burgeoning development of aqueous zinc batteries. However, kinetics-sluggish Zn as the dominant charge carriers in cathodes leads to suboptimal charge-storage capacity and durability of aqueous zinc batteries. Here, we discover that an ultrathin two-dimensional polyimine membrane, featured by dual ion-transport nanochannels and rich proton-conduction groups, facilitates rapid and selective proton passing.
View Article and Find Full Text PDFAdv Mater
April 2024
College of Chemistry, Sichuan University, Chengdu, 610064, China.
Along with the development of nuclear power, concerns about radioactive emissions and the potential for nuclear leakage have been widely raised, particularly of harmful iodine isotopes. However, as a significant component of nuclear air waste, the enrichment and detection of air-dispersed gaseous iodine remain a challenge. In this work, it is focused on developing an attraction-immobilization-detection strategy-based fluorescence method for the on-site detection of volatile iodine, by employing a photoluminescent ionic polyimine network-polyvinylpyrrolidone (IPIN-PVP) composite membrane.
View Article and Find Full Text PDFMembranes (Basel)
August 2023
Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan.
In this paper, a cobalt (Co)-chelated polynaphthalene imine (Co-PNIM) was calcined to become an oxygen reduction reaction (ORR) electrocatalyst (Co-N-C) as the cathode catalyst (CC) of an anion exchange membrane fuel cell (AEMFC). The X-ray diffraction pattern of CoNC-1000A900 illustrated that the carbon matrix develops clear C(002) and Co(111) planes after calcination, which was confirmed using high-resolution TEM pictures. Co-N-Cs also demonstrated a significant ORR peak at 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2023
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Biological proton channels play important roles in the delicate metabolism process, and have led to great interest in mimicking selective proton transport. Herein, we designed a bioinspired proton transport membrane by incorporating flexible 14-crown-4 (14C4) units into rigid frameworks of polyimine films by an interfacial Schiff base reaction. The Young's modulus of the membrane reaches about 8.
View Article and Find Full Text PDF