98%
921
2 minutes
20
Along with the development of nuclear power, concerns about radioactive emissions and the potential for nuclear leakage have been widely raised, particularly of harmful iodine isotopes. However, as a significant component of nuclear air waste, the enrichment and detection of air-dispersed gaseous iodine remain a challenge. In this work, it is focused on developing an attraction-immobilization-detection strategy-based fluorescence method for the on-site detection of volatile iodine, by employing a photoluminescent ionic polyimine network-polyvinylpyrrolidone (IPIN-PVP) composite membrane. This strategy synergizes ion-induced dipole interactions from IPIN and complexation effects from PVP, allowing effective iodine enrichment and immobilization. As a result, the optimized IPIN-PVP membrane exhibits rapid response times of 5 s and a low detection limit of 4.087 × 10 m for gaseous iodine. It also introduces a portable handheld detection device that utilizes the composite membrane, offering a practical solution for real-time on-site detection of volatile iodine. This innovation enhances nuclear safety measures and disaster management by providing rapid and reliable iodine detection capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202311990 | DOI Listing |
Adv Sci (Weinh)
September 2025
State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
Biofouling often occurs simultaneously with fogging, presenting significant challenges to visibility, safety, and operational efficiency. The development of biocompatible coatings that offer both antifouling performance and stability under fogging conditions is highly sought after. A method to form multifunctional coatings is presented, utilizing a zwitterionic nanocellulose composite material that demonstrates both antifogging and antifouling properties, suitable for application on various surfaces.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFiScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDFVet World
July 2025
Department of Geography, University College London, United Kingdom.
Background And Aim: Hospital effluents are a major source of environmental contaminants, harboring pathogenic bacteria, toxic trace metals, and high organic loads. This study aimed to evaluate the bacteriological and physicochemical profiles of wastewater discharged from three coastal hospitals in Oran, Algeria, and to assess the associated public and livestock health risks under the One Health approach.
Materials And Methods: A cross-sectional study was conducted from January 2023 to February 2024, involving monthly sampling at three hospitals and one drainage collector.