A Bioinspired Free-Standing 2D Crown-Ether-Based Polyimine Membrane for Selective Proton Transport.

Angew Chem Int Ed Engl

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological proton channels play important roles in the delicate metabolism process, and have led to great interest in mimicking selective proton transport. Herein, we designed a bioinspired proton transport membrane by incorporating flexible 14-crown-4 (14C4) units into rigid frameworks of polyimine films by an interfacial Schiff base reaction. The Young's modulus of the membrane reaches about 8.2 GPa. The 14C4 units could grab water, thereby forming hydrogen bond-water networks and acting as jumping sites to lower the energy barrier of proton transport. The molecular chains present a vertical orientation to the membrane, and the ions travel between the quasi-planar molecular sheets. Furthermore, the 14C4 moieties could bond alkali ions through host-guest interactions. Thus, the ion conductance follows H ≫K >Na >Li , and an ultrahigh selectivity of H /Li (ca. 215) is obtained. This study provides an effective avenue for developing ion-selective membranes by embedding macrocycle motifs with inherent cavities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202300167DOI Listing

Publication Analysis

Top Keywords

proton transport
16
selective proton
8
14c4 units
8
proton
5
bioinspired free-standing
4
free-standing crown-ether-based
4
crown-ether-based polyimine
4
membrane
4
polyimine membrane
4
membrane selective
4

Similar Publications

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

The Role of Phospholipids in Mitochondrial Dynamics and Associated Diseases.

Front Biosci (Landmark Ed)

August 2025

University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49330 Angers, France.

The bioenergetic machinery of the cell is protected and structured within two layers of mitochondrial membranes. The mitochondrial inner membrane is extremely rich in proteins, including respiratory chain complexes, substrate transport proteins, ion exchangers, and structural fusion proteins. These proteins participate directly or indirectly in shaping the membrane's curvature and facilitating its folding, as well as promoting the formation of nanotubes, and proton-rich pockets known as cristae.

View Article and Find Full Text PDF

Is high specific surface area essential for anode catalyst supports in proton exchange membrane water electrolysis?

Mater Horiz

September 2025

New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.

View Article and Find Full Text PDF