98%
921
2 minutes
20
Background: Viral diseases have profoundly influenced the sustainable development of the swine farming industry. With the development of genomics technology, the combination of transcriptome, genetic variation, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective tool for identification of disease resistance genes in pigs. The immune system of an organism is the source of disease resistance in livestock, consisting of various immune tissues, as well as the immune cells and cytokines they produced. However, comprehensive systematic studies on transcriptome of porcine immune tissues are still rare. Poly(I:C), as a viral mimic, is commonly used to study immune responses of the body during viral infections, and serves as a valuable tool for investigating immune mechanisms in swine.
Results: WGCNA analysis identified core immune genes across six immune tissues (bone marrow, jejunum, lymph node, PBMC, spleen, thymus) in Landrace pigs, which are also crucial for the development of PBMCs. The examination of the changes in the proportion of immune cells during three developmental stages (1-month-old, 4-month-old, 7-month-old) shows a shift from innate immunity to humoral immunity. By integrating different epigenetic genomics datasets, we identified several core immune genes and their causal variants, including IFI44, IFIT5, EIF2AK2 and others, which are closely related to immune development and response. Functional validation studies reveal that the IFI44 gene acts as a negative regulator of the antiviral response; its inhibition effect significantly reduced Poly(I:C)-induced cell necrosis, while enhancing apoptosis to combat viral infections.
Conclusion: Our study elucidated the fundamental transcriptional program in porcine immune tissues and the immunodynamics underlying development of PBMCs, identifying many core immune genes, including IFI44, which plays a critical negative regulator role in the antiviral response, providing valuable insights for breeding programs aimed at enhancing pig disease resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087129 | PMC |
http://dx.doi.org/10.1186/s40104-025-01184-y | DOI Listing |
Genome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors arising from mesenchymal tissues, with extremity and superficial trunk STS (eSTS) comprising the majority of cases. The management of localized eSTS requires a multidisciplinary approach to optimize oncologic and functional outcomes. This review outlines the natural history, diagnostic workup, and treatment principles for localized eSTS, emphasizing the role of histology-specific considerations in guiding management strategies.
View Article and Find Full Text PDFNature
September 2025
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Key Laboratory of RNA Innovation Science and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Antigen-induced clustering of cell surface receptors, including T cell receptors and Fc receptors, represents a widespread mechanism in cell signalling activation. However, most naturally occurring antigens, such as tumour-associated antigens, stimulate limited receptor clustering and on-target responses owing to insufficient density. Here we repurpose proximity labelling, a method used to biotinylate and identify spatially proximal proteins, to amplify designed probes as synthetic antigen clusters on the cell surface.
View Article and Find Full Text PDFOncogene
September 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.
View Article and Find Full Text PDF