98%
921
2 minutes
20
The limited capacity of adult mammalian cardiomyocytes to undergo cell division and proliferation is one of the key factors contributing to heart failure. In newborn mice, cardiac proliferation occurs during a brief window, but this proliferative capacity diminishes by 7 days after birth. Current studies on cardiac regeneration focused on elucidating changes in regulatory factors within the heart before and after this proliferative window, aiming to determine whether potential association between these factors and cell cycle arrest in cardiomyocytes. Facilitating the re-entry of cardiomyocytes into the cell cycle or reversing their exit from it represents a critical strategy for cardiac regeneration. This paper provides an overview of the role of cell cycle arrest in cardiac regeneration, briefly describes cardiomyocyte proliferation and cardiac regeneration, and systematically summarizes the regulation of the cell cycle arrest in cardiomyocytes, and the potential metabolic mechanisms underlying cardiomyocyte cycle arrest. Additionally, we highlight the development of cardiovascular disease drugs targeting cardiomyocyte cell cycle regulation and their status in clinical treatment. Our goal is to outline strategies for promoting cardiac regeneration and repair following cardiac injury, while also pointing toward future research directions that may offer new technologies and prospects for treating cardiovascular diseases, such as myocardial infarction, arrhythmia and heart failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066773 | PMC |
http://dx.doi.org/10.3389/fcvm.2025.1538546 | DOI Listing |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDFSci Adv
September 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.
View Article and Find Full Text PDFMed Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDF