Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Empirical breeding efforts targeting cold tolerance and ideal plant architecture have significantly improved yield and facilitated the geographic expansion of japonica rice cultivation. However, the genetic drivers and underlying molecular mechanisms of these traits remain insufficiently understood. Here, we identify Plant Height 8 (PH8) as a key gene regulating both plant stature and cold stress response in rice. Genome wide association analysis (GWAS), supported by functional validation, shows that loss of PH8 reduces plant height without affecting other agronomic traits. Notably, we found that PH8 also negatively regulates cold tolerance. A prevalent haplotype, PH8, exhibits reduced PH8 expression due to natural variation in its promoter region, resulting in shorter plants and enhanced cold tolerance. Selective sweep and geographic distribution analyses indicate that PH8 originated in high-latitude regions and underwent strong directional selection during modern japonica improvement. Functional assays demonstrate that PH8 enhances cold tolerance via improved reactive oxygen species (ROS) scavenging by repressing APX2, an antioxidant gene involved in ROS detoxification. Our findings reveal PH8 as a dual regulator of plant architecture and cold stress adaptation, and highlight PH8 as a historically selected allele that contributed to the climatic adaptation and geographical expansion of japonica rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069786PMC
http://dx.doi.org/10.1186/s12284-025-00793-5DOI Listing

Publication Analysis

Top Keywords

cold tolerance
20
ph8
10
natural variation
8
architecture cold
8
plant architecture
8
expansion japonica
8
japonica rice
8
plant height
8
cold stress
8
cold
7

Similar Publications

Regulation of food intake by Connexin43 via adipocyte-sensory neuron electrical synapses.

Mol Metab

September 2025

Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. Electronic address:

Background And Objective: Connexin43 (Cx43), encoded by Gja1, forms gap junctions between adjacent cells. In adipose tissue, it is upregulated during adipose beiging while downregulated by high-fat-diet (HFD) feeding. Adipocyte-specific Gja1 overexpression enhances adipose tissue beiging in response to mild cold stress of room temperature.

View Article and Find Full Text PDF

Many Arctic fishes experience prolonged periods of extreme cold and large thermal variation over both rapid and seasonal time scales which challenge critical physiological functions. In the central Canadian Arctic, we caught wild adult lake trout (Salvelinus namaycush) acclimatized to winter and summer temperatures to determine the extent to which they seasonally adjust cardiac thermal performance and adrenergic control. We assessed the intrinsic and maximum heart rate (f and f) of anaesthetised fish through cholinergic blockade and either adrenergic blockade (f) or stimulation (f) during acute warming.

View Article and Find Full Text PDF

Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.

Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).

View Article and Find Full Text PDF

Climate change threatens biodiversity and ecosystem services around the globe. Despite the importance of native bees as pollinators, there is evidence of global declines, and we know very little about how climate shapes their distributions now and into the future. In the current study, we combined large-scale seasonal field sampling and experimental acclimation to examine whether populations of an Australian bee, Exoneura robusta, vary in their capacity to adapt to different climates.

View Article and Find Full Text PDF