98%
921
2 minutes
20
Delivery of mRNA (mRNA) to the central nervous system (CNS) remains a significant challenge. Herein, we design a library of furan-derived lipids and, to our knowledge, for the first time, leverage the meningeal lymphatic vessels (MLVs) route to achieve efficient delivery of mRNA to the brain. These furan-derived lipids were engineered with different furan cores, functional groups, and tails. We found that tetrahydrofuran (THF)-derived lipid nanoparticles (LNPs) generally displayed exceptional mRNA delivery compared to their furan-based counterparts. Specifically, LNPs formulated with four-acetal-tail mono-THF-derived lipid F10T5 and four-acetal-tail di-THF-derived lipid F11T6 demonstrated significantly higher mRNA delivery efficiency to the brain compared with FDA-approved SM102 LNPs. The data revealed that these LNPs bypassed the blood-brain barrier (BBB) via the lymphatic pathway, traveling from deep cervical lymph nodes (dCLNs) to the meninges and subsequently entering brain cells. Collectively, this work provides valuable insights into engineering LNPs and exploring alternative approaches for the delivery of mRNA to the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c16326 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFVirol Sin
September 2025
State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.
Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
Heat shock protein 70 (HSP70) represents a critical barrier to effective mild-temperature photothermal therapy (MPTT), limiting its clinical utility in aggressive cancers like triple-negative breast cancer (TNBC). While small interfering RNA (siRNA)-mediated HSP70 suppression offers a promising solution, optimal timing for this therapeutic combination remains unexplored. Here, it is demonstrated that precisely timed administration significantly enhances MPTT efficacy through systematic temporal characterization of HSP70 expression dynamics.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers
As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.
View Article and Find Full Text PDFJ Med Chem
September 2025
The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China.
Familial hypertriglyceridemia (FHTG), a severe subtype of primary hypertriglyceridemia caused by mutations in and other related genes, is linked to life-threatening cardiovascular complications. Current therapies inadequately address the underlying genetic pathology. Here, we developed a novel exosome-based mRNA delivery platform to restore functional glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 () expression, providing a targeted therapeutic strategy for FHTG.
View Article and Find Full Text PDF