Exploring the In Vivo Fate of β-1, 3/1, 6-Glucan Using Quantitative Tandem Mass Spectrometry Based on a Structure-Specific Fragment.

Mar Drugs

Key Laboratory of Marine Drugs (Ministry of Education), Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-glucan, a promising drug candidate for immuno-antitumor therapy, holds tremendous potential for clinical applications. However, the absence of highly sensitive quantitative methods for polysaccharides, attributed to their complicated chemical structures and susceptibility to endogenous interference, has posed significant challenges for their clinical development. Here, we report a highly sensitive and reliable analytical strategy for quantifying β-1, 3/1, 6-glucan derived from (BG136) in various biological matrices. This approach integrates targeted depolymerization and derivatization, followed by oligosaccharide isomer fingerprinting using ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The absolute quantification of BG136 relied on the abundance of the structure-specific trisaccharide (Glc-β1, 6-Glc-β1, 3-Glc) generated. This methodology not only facilitates prototype-based BG136 administration but also exhibits remarkable sensitivity. Following method optimization and validation, we successfully explored the in vivo fate of BG136 across multiple models, including cellular uptake and release kinetics, as well as preclinical and clinical pharmacokinetics. These achievements provide insight into the "black box" of BG136 from administration to elimination in vivo. This work marks the first practical application of this strategy in complex biological matrices, offering methodological support for the successful execution of the BG136 Phase I clinical trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028845PMC
http://dx.doi.org/10.3390/md23040177DOI Listing

Publication Analysis

Top Keywords

vivo fate
8
β-1 3/1
8
3/1 6-glucan
8
tandem mass
8
mass spectrometry
8
highly sensitive
8
biological matrices
8
bg136 administration
8
bg136
6
exploring vivo
4

Similar Publications

Ginger, a globally cultivated spice and medicinal herb, is renowned for its health benefits and distinctive flavor. As ginger's main pungent and bioactive components, 6-gingerol and 6-shogaol share similar physicochemical properties and can be obtained by extraction from ginger or chemical synthesis. After oral ingestion, the biological fate of 6-gingerol and 6-shogaol are influenced by processes including absorption, biotransformation, distribution, and excretion.

View Article and Find Full Text PDF

Despite the clinical success of redirected T cells in the setting of cancer adoptive cell immunotherapy, patients may exhibit resistance to treatment, resulting in uncontrolled disease and relapses. This phenomenon partly relies on impaired -produced T cell metabolic fitness, including a decreased respiratory reserve, as well as a greater sensitivity to tumor-mediated metabolic stress. To improve the respiratory capacity of cultured T cells, we sought to target the nicotinamide adenine dinucleotide/sirtuine-1/reactive oxygen species (ROS) axis through supplementation of culture medium with resveratrol.

View Article and Find Full Text PDF

Understanding the kinetics of macrophage uptake and the metabolic fate of iron-carbohydrate complexes used for iron deficiency anemia treatment.

J Control Release

September 2025

Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland. Electronic address:

Iron-carbohydrate complexes (ICCs) are widely used nanomedicines to treat iron deficiency anemia, yet their intracellular fate and the mechanisms of action underlying their differences in treatment outcomes remain poorly understood. Here, we thus performed a comprehensive dynamic characterization of two structurally distinct ICCs - iron sucrose (IS) and ferric carboxymaltose (FCM) - in primary human macrophages, key cells to the iron metabolism. By employing innovative correlative microscopy techniques, elemental analysis, and in vitro pharmacokinetic profiling, we demonstrate that the uptake, intracellular trafficking, and biodegradation of ICCs depend on their physicochemical properties.

View Article and Find Full Text PDF

Light-emitting diode-derived blue light overexposure accelerates corneal endothelial cell aging by inducing abnormal ROS accumulation.

J Photochem Photobiol B

September 2025

The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China; Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center

Blue light, defined as short-wavelength visible light ranging from 400 to 500 nm, is recognized for its high energy within the visible light spectrum. The prevalent use of light-emitting diodes (LEDs) has significantly increased exposure to blue light. Corneal endothelial cells (CECs) playing a crucial role in maintaining corneal transparency to get clear visual field.

View Article and Find Full Text PDF

Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.

View Article and Find Full Text PDF