98%
921
2 minutes
20
Despite the clinical success of redirected T cells in the setting of cancer adoptive cell immunotherapy, patients may exhibit resistance to treatment, resulting in uncontrolled disease and relapses. This phenomenon partly relies on impaired -produced T cell metabolic fitness, including a decreased respiratory reserve, as well as a greater sensitivity to tumor-mediated metabolic stress. To improve the respiratory capacity of cultured T cells, we sought to target the nicotinamide adenine dinucleotide/sirtuine-1/reactive oxygen species (ROS) axis through supplementation of culture medium with resveratrol. Resveratrol-treated T cells display broader respiratory capacities, along with sustained ROS control ability. Strikingly, we reveal that the effect of resveratrol on T cells is restricted to cytomegalovirus (CMV)-exposed donors, a virus known to promote immune aging. Herein, CMV prior infection is associated with the influence of terminally differentiated T cells on the fate of companion T cell subsets. Moreover, beyond resveratrol's effect on redirected T cell metabolic features, it provides a functional anti-tumor advantage to these CMV-seropositive donor-derived T cells, in a third-generation CD123-specific chimeric antigen receptor-T cell model. This highlights the necessity to consider patient's intrinsic attributes, especially immune aging-related ones, when assessing new T cell production processes to improve clinical efficacy, pushing the limits of personalized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409381 | PMC |
http://dx.doi.org/10.1016/j.omtm.2025.101553 | DOI Listing |
Nano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Center for Experimental Teaching, School of Pharmacy, Guangzhou Medical University, Guangzhou, China.
Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.
Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.
Haematologica
September 2025
University Hospital Heidelberg, Heidelberg.
Not available.
View Article and Find Full Text PDFHaematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFHaematologica
September 2025
Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.
We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.
View Article and Find Full Text PDF