98%
921
2 minutes
20
Three parallel sequencing batch reactors (control, small-sized polyurethane sponge (PUS) (3.0 mm), and large-sized PUS (10.0 mm)) were used to investigate aerobic granular biofilm (AGB) characteristics. Results show that 10.0 mm PUS facilitated rapid formation of large-sized AGB (AGB), which exhibited higher biomass concentration (8.5 g/L) and faster settling velocity (69.2-159.3 m/h) than aerobic granular sludge (AGS) (3.2 g/L and 38.6-80.0 m/h). The AGB system also maintained long-term structural stability with a lower instability coefficient (0.004-0.018 min) than AGS (0.053-0.090 min). Additionally, during long-term operation, the AGB system achieved excellent removal efficiencies for NH-N (99.6 ± 0.4 %) and total nitrogen (92.3 ± 2.6 %), and exhibited a lower sludge yield (0.05 gVSS/gCOD) than AGS (0.14 gVSS/gCOD). The larger size and compact structure of AGB increased anoxic/anaerobic zones, enriching denitrifying and hydrolytic/fermentative bacteria. These findings highlight AGB with large PUS as a more promising biotechnology for practical applications than conventional AGS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132543 | DOI Listing |
Bioresour Technol
September 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
Microalgal-bacterial granular sludge (MBGS) efficiently removes conventional contaminants, but its potential for estrogen transformation and detoxification remains unclear, which is a concerning topic for biological wastewater treatment of endocrine-disrupting contaminants. This study comprehensively investigated the fate, transformation, and detoxification of 17α-ethinylestradiol (EE2) in MBGS. Results demonstrated that MBGS showed superior performance to standalone Chlorella vulgaris and aerobic granular sludge, achieving 80.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
The ubiquitous distribution of perfluorooctanoic acid (PFOA) in wastewater poses significant challenges for wastewater treatment systems, yet its impact on granular sludge systems remains poorly understood. This study investigated the performance of aerobic granular sludge (AGS) and algal-bacterial granular sludge (ABGS) systems in terms of stability, nutrient and PFOA removal, enzyme activity, and microbial communities under PFOA stress. Both systems demonstrated tolerance and adsorptive removal of PFOA with enhanced total nitrogen (TN) and slightly decreased total phosphorus (TP) removals.
View Article and Find Full Text PDFEnviron Res
August 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China. Electronic address:
In situ cultivation and long-term stabilization of continuous-flow aerobic granular sludge (AGS) pose significant challenges for the sustainable advancement of wastewater technology. Herein, we demonstrated the successful 330-day operation of a novel continuous-flow self-circulating AcOA-Zier reactor. Aeration-driven liquid recirculation achieved recirculation-to-influent (R/I) ratios of 26-70, optimizing dissolved oxygen gradients and enabling exceptional contaminant removal of 96 % for chemical oxygen demand (COD) and 95 % for total inorganic nitrogen (TIN).
View Article and Find Full Text PDFJ Environ Manage
August 2025
State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
Naphthenic acids (NAs) are toxic pollutants causing severe environmental issues that are difficult to be biodegraded. Aerobic granular sludge (AGS) has emerged as a promising biotechnology for NAs-containing wastewater treatment, though the mechanisms underlying effective removal and microbial response remain unclear. This study systematically compared degradation mechanisms and microbial response in cyclohexane carboxylic acid (CHCA)-tolerant AGS (T-AGS) versus unacclimated AGS (C-AGS).
View Article and Find Full Text PDFWater Res
August 2025
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China. Electronic address:
Aerobic granular sludge (AGS) technology is often constrained by slow granulation and structural instability, issues largely attributed to imbalances in filamentous bacteria and extracellular polymeric substances (EPS). In this study, calcium-loaded activated carbon microtubes (ACMTs-Ca) were developed as novel frameworks to enhance AGS formation and stability. The interfacial energy barrier between microorganisms and ACMTs-Ca was reduced by 67.
View Article and Find Full Text PDF