Remodeling of Effector and Regulatory T Cells by Capture and Utilization of miRNAs Using Nanocomposite Hydrogel for Tumor-Specific Photothermal Immunotherapy.

ACS Nano

Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In immunotherapy for malignant tumors, the dysregulation of the balance between effector T cells and regulatory T cells (Tregs) and the uncertain efficacy due to individual differences have been considered as two critical challenges. In this study, we engineered an injectable nanocomposite hydrogel system (SNAs@M-Gel) capable of suppressing Treg proliferation and blocking PD-1/PD-L1-mediated immune evasion effectively, achieved through the stimulus-responsive modulation of multiple tumor-associated microRNAs. Simultaneously, this system enables microRNA-dependent photothermal immunotherapy, facilitating a highly efficient and personalized approach to tumor treatment. Specifically, oxidized sodium alginate (OSA) and cancer cell membrane (CCM)-encapsulated spherical nucleic acid nanoparticles (SNAs@M) were used to construct the SNAs@M-Gel hydrogel in situ at the tumor site through the formation of pH-sensitive Schiff base bonding and cross-linking using endogenous calcium ions (Ca). During treatment, SNAs@M-Gel was retained locally for up to 10 days, and SNAs@M nanoparticles were continuously released into the tumor microenvironment. Through the targeting ability of CCM, SNAs@M precisely entered tumor cells and specifically hybridized with the overexpressed miR-214 and miR-130a, leading to a significant downregulation of PD-L1 expression on tumor cells and the restoration of cytotoxic T lymphocyte (CTL) function suppressed by Tregs, thereby remodeling the immune microenvironment. In addition, miRNAs functioned as cross-linking agents, facilitating the aggregation of SNAs and allowing the localized production of photothermal agents directly inside tumor cells, which, under near-infrared (NIR) irradiation, promoted highly selective photothermal therapy. This cascade of events not only led to the destruction of the primary tumor but also resulted in the release of a substantial number of tumor-related antigens, which triggered the maturation of adjacent dendritic cells (DCs) and subsequent priming of tumor-specific CTLs, while simultaneously depleting Tregs, thereby reversing the tumor-promoting immune microenvironment and enhancing the overall therapeutic efficacy of photothermal immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c18801DOI Listing

Publication Analysis

Top Keywords

photothermal immunotherapy
12
tumor cells
12
regulatory cells
8
nanocomposite hydrogel
8
immune microenvironment
8
cells
7
tumor
7
photothermal
5
remodeling effector
4
effector regulatory
4

Similar Publications

CpG ODN Combined with Gold Nanorods Enhances Immune Activation and Its Potential Mechanism.

J Inflamm Res

September 2025

Department of the Head and Neck, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, People's Republic of China.

Background: Immune escape of tumor cells is a common problem with tumor photothermal therapy utilizing gold nanorods (Au NRs). Whether CpG ODN, an immune adjuvant, can synergize with Au NRs to activate the immune response and its potential mechanism is not clear.

Methods: The effect of Au NRs combined with CpG ODN (Au NRs-C) on the activity of various immune-related cells, such as double-positive T cells, macrophages, NK cells, Th17, and Treg.

View Article and Find Full Text PDF

Metallothionein 2A-Silencing Antimonene-Based Nanoagonist for Amplifying the Photothermal Immunotherapy of Gynecologic Malignancy.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technol

Gynecologic malignancies are prone to metastasis and recurrence due to the low efficacy and sensitivity of current clinical treatments. Here, we construct ultrasmall Sb@Au nanodots (Sb@Au NDs) as a metallothionein 2A (MT 2A)-silencing nanoagonist for effective photothermal immunotherapy of gynecologic malignancies. Sb@Au NDs show high photothermal conversion efficiency of 56.

View Article and Find Full Text PDF

The photothermal conversion efficiency (PCE) stands as a pivotal determinant in the therapeutic efficacy of photothermal nanoagents (PTNAs) within the context of photothermal therapy (PTT). The dearth of universal strategies to greatly enhance PCE has markedly curtailed the practical deployment of PTNAs. Now this problem is addressed by proposing a universal approach founded on molecular rotors and J-aggregates, "highly efficient molecular motor matrix", to greatly elevate the PCE of traditional PTNAs.

View Article and Find Full Text PDF

Phototherapeutic methods like photodynamic therapy (PDT), photothermal therapy (PTT) and photodecaging have emerged as promising modalities for cancer treatment. Phototherapeutics are activated by light and thereby generate reactive oxygen species (ROS), heat, or release a caged, toxic carry-on. Their distinct advantages of spatial and temporal control preserve healthy tissue while promising a minimal invasive alternative to traditional therapeutic approaches.

View Article and Find Full Text PDF

Recent Advancement in MRI-Based Nanotheranostic Agents for Tumor Diagnosis and Therapy Integration.

Int J Nanomedicine

September 2025

Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, People's Republic of China.

Cancer remains one of the leading causes of mortality worldwide. Although conventional treatment strategies such as chemotherapy, radiotherapy, and surgery have demonstrated therapeutic potential, their clinical effectiveness is often limited by poor targeting specificity, systemic toxicity, and inadequate treatment monitoring. Magnetic resonance imaging (MRI) has emerged as a powerful diagnostic modality owing to its non-invasive nature, high spatial resolution, deep tissue penetration, and real-time imaging capabilities, making it particularly suitable for guiding and evaluating cancer therapies.

View Article and Find Full Text PDF