Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we report on the synthesis and characterization of cyclodextrin-based nanocarriers, intended as new biogenic and biodegradable drug-delivery agents. Specifically, β-cyclodextrins were covalently cross-linked by carbonyl linkages using carbonyldiimidazole (CDI) and were colloidally stabilized via PEGylation to form β-CD-CO-PEG nanoparticles termed CD-CO NPs. The optimized synthesis results in size-controlled nanoparticles with a narrow particle size distribution and a hydrodynamic diameter around 200-300 nm in water and 100-160 nm as dried powder as observed by scanning electron microscopy. CD-CO nanoparticles are promising drug delivery carriers as they offer an intrinsic pore system originating from the β-cyclodextrin building units and an additional intraparticle pore space created by cross-linking these β-cyclodextrin units. We demonstrate the biodegradability of these materials and show exemplarily their drug delivery potential using two different model cargos. Time-based fluorescence release measurements established a stable cargoretention of the fluorescent dye Hoechst at neutral pH, and in contrast, an efficient stimuli-responsive release at pH 5, accompanied by a fast nanoparticle degradation. This cargo-release behavior at low pH is further observed with a small drug molecule, the hydrophobic necrosulfonamide, when followed with infrared spectroscopy. Finally, the drug-delivery potential of these new nanoparticles was established by following the cell uptake of covalently labeled CD-CO nanoparticles into HeLa cells with fluorescence microscopy, whereby the membrane-permeable Hoechst dye was delivered time-delayed in comparison to free Hoechst dye. In summary, our work aims to contribute to the design and understanding of cyclodextrin-based nanocarriers as a promising drug delivery platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923844PMC
http://dx.doi.org/10.1021/acsomega.4c10200DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
cyclodextrin-based nanocarriers
8
cd-co nanoparticles
8
promising drug
8
hoechst dye
8
nanoparticles
6
drug
5
cross-linked cyclodextrin-based
4
cyclodextrin-based nanoparticles
4
nanoparticles drug
4

Similar Publications

Medications for Opioid Use Disorder in County Jails - Outcomes after Release.

N Engl J Med

September 2025

Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst.

Background: In 2019, seven county correctional facilities (jails) in Massachusetts initiated pilot programs to provide all Food and Drug Administration-approved medications for opioid use disorder (MOUD).

Methods: This observational study used linked state data to examine postrelease MOUD receipt, overdose, death, and reincarceration among persons with probable opioid use disorder (OUD) in carceral settings who did or did not receive MOUD from these programs from September 1, 2019, through December 31, 2020. Log-binomial and proportional-hazards models were adjusted for propensity-score weights and baseline covariates that remained imbalanced after propensity-score weighting.

View Article and Find Full Text PDF

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Objective: Systematize the methodological decisions adopted in the budget impact analyses of the recommendation reports of the National Commission for the Incorporation of Technologies into the Unified Health System (Conitec) regarding drugs incorporated into the SUS (Brazilian Unified Health System) in the period from 2012 to 2024.

Methods: This is an exploratory, descriptive, retrospective study, based on document analysis of Conitec's technical recommendation reports with decisions on the incorporation of drugs published up to 2024. Information from the Budget Impact Analyses (BIA) was extracted and presented in terms of percentage, median and interquartile range.

View Article and Find Full Text PDF

Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.

View Article and Find Full Text PDF

Central nervous system (CNS) diseases, including neurodegenerative diseases, stroke, brain tumors, and others, result in poor quality of life and can cause substantial disability. Not all CNS diseases are amenable to surgical approaches, so drug development is important for disease treatment. Unfortunately, there are few drugs currently available for CNS diseases.

View Article and Find Full Text PDF