98%
921
2 minutes
20
To enhance oil and gas recovery, a novel hydrophobic terpolymer was synthesized via free radical polymerization. The terpolymer consists of acrylamide, acrylic acid, and hydrophobic monomers, and is used as a hydraulic fracturing fluid thickener for freshwater environments. Hydrophobic groups were introduced into terpolymer to improve its tackiness and temperature resistance. The conformation and key parameters of hydrophobic monomers at different temperatures were investigated through a combination of experiments and molecular dynamics simulations. These methods were employed to elucidate the mechanism behind its high-temperature resistance. The experiment results show that, at concentrations between 0.2% and 0.4%, significant intermolecular aggregation occurs, leading to a substantial increase in solution viscosity. Configuring the base fluid of synthetic polymer fracturing fluid with 1% doping, the apparent viscosities of the base fluid were 129.23 mPa·s and 133.11 mPa·s, respectively. The viscosity increase rate was 97%. The base fluid was crosslinked with 1.5% organozirconium crosslinker to form a gel. The controlled loss coefficient and loss velocity of the filter cake were C = 0.84 × 10 m/min and v = 1.40 × 10 m/min at 90 °C, meeting the technical requirements for water-based fracturing fluid. Molecular dynamics simulations revealed that the radius of gyration of the hydrophobically linked polymer chain segments decreases as the temperature increases. This is due to the increased thermal motion of the polymer chain segments, resulting in less stretching and intertwining of the chains. As a result, the polymer chains move more freely, which decreases the viscosity of the solution. In conclusion, the proposed fracturing fluid thickener system demonstrates excellent overall performance and shows significant potential for application in oil and gas recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901859 | PMC |
http://dx.doi.org/10.3390/ma18051171 | DOI Listing |
J Adv Res
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology at Beijing, Beijing 100083, China. Electronic address:
Introduction: Accurate characterization of multi-size fractures in coal is crucial for estimating its transport properties. However, the extraction of narrow microfractures in 3D voxel-type CT images is difficult, which causes the loss of connectivity in the extracted fracture network and reduces the accuracy of the predicted transport properties.
Objectives: Improving the image quality and optimizing the segmentation process to deal with the inaccuracy of fracture extraction from coal CT images.
Sci Adv
September 2025
Key Laboratory of Ocean Observation and Forecasting, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266400, China.
A large hydrothermal field at depths >4300 meters was found on the east Caroline plate in the western Pacific Ocean. Here, we show that large hydrothermal pipes with steep walls and breccia-dominated bottoms suggest explosions of billion metric tons of TNT (trinitrotoluene) equivalent. More than 800 short-duration seismic events were detected within 28 days along a 150-kilometer profile, indicating widespread ongoing explosive gas release.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
August 2025
From the Department of Orthopaedic Surgery (Mastrokostas, and Monas), SUNY Downstate Health Sciences University, and the Maimonides Medical Center (Mastrokostas, Rodriguez, Lam, Razi, and Ng), Department of Orthopaedic Surgery, Brooklyn, NY.
Background: The purpose of this study was to identify the incidence and risk factors associated with surgical site infection (SSI) after open reduction and internal fixation of bimalleolar ankle fractures. Bimalleolar ankle fractures are one of the most common subtypes of ankle fractures, accounting for 15% to 20% of all ankle fractures. Recent studies have shown that 4.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, DK-6400, Denmark.
This study presents a comprehensive framework combining Selective Laser Melting (SLM) of Titanium (Ti64) alloys, finite element simulation, and artificial intelligence (AI) to advance orthopedic implants' design and predictive evaluation. Dense Ti64 specimens are fabricated using ten distinct SLM parameter sets to explore the effects of volumetric energy density (VED) on mechanical behavior, porosity distribution, and microstructural integrity. Optimal VED ranges are identified to balance defect minimization and mechanical performance, with porosity levels strongly influencing tensile strength and Young's modulus.
View Article and Find Full Text PDFNeuropharmacology
September 2025
Department of Anesthesiology, Hebei Medical University Third Hospital, Shijiazhuang, 050051, Hebei Province, PR China. Electronic address:
Postoperative cognitive dysfunction (POCD) occurs in elderly surgical patients as a common complication and manifests as cognitive decline. It is associated with neuroinflammation, microglial activation, and impaired metabolic waste clearance-key mechanisms underlying POCD. Meningeal lymphatic vessels (MLVs) facilitate the drainage of cerebrospinal fluid (CSF) and interstitial fluid (IF), regulating brain immune responses and clearing metabolic waste, immune cells, and antigens, thus modulating neuroinflammation.
View Article and Find Full Text PDF