Diversified nanocarrier design to optimize glucose oxidase-mediated anti-tumor therapy: Strategy and progress.

Int J Biol Macromol

School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China. Electronic address: wang.yanho

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Given the inherent complexity and heterogeneity of tumors, current therapeutic approaches often fall short in meeting prognostic requirements. Starvation therapy (ST) utilizing glucose oxidase (GOx) has emerged as a promising strategy, specifically targeting tumor glucose consumption to disrupt nutrient supply. However, the therapeutic potential of GOx is significantly hampered by its inherent limitations as a protein, particularly its poor stability and short in vivo half-life. In recent years, the development of nanocarriors has provided an effective platform for intravenous and local tumor delivery of GOx. This review systematically examines three key strategies in GOx delivery: stimulus-response, biofilm modification, and local delivery. The progress in various carrier systems for GOx-mediated tumor therapy is comprehensively summarized, providing valuable insights for nanocarrier design. Furthermore, the existing challenges and future directions to advance the development of GOx-based tumor therapies are critically analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141581DOI Listing

Publication Analysis

Top Keywords

nanocarrier design
8
diversified nanocarrier
4
design optimize
4
optimize glucose
4
glucose oxidase-mediated
4
oxidase-mediated anti-tumor
4
anti-tumor therapy
4
therapy strategy
4
strategy progress
4
progress inherent
4

Similar Publications

Polysaccharide copolymeric conjugates and their applications in targeted cancer therapy.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:

Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.

View Article and Find Full Text PDF

Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.

View Article and Find Full Text PDF

Glutathione-responsive and mitochondria targeting enhanced photodynamic therapy and cascade-triggered carbon monoxide release for all-in-one tumor therapy.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address:

Carbon monoxide (CO) has demonstrated significant potential in tumor therapy. However, the uncontrolled release of CO and single-modality therapy often fail to achieve the desired therapeutic outcomes. To address the above deficiencies, mesoporous silica nanoparticles containing tetrasulfide bonds (TMSNs) were constructed as intelligent nanocarriers to co-deliver a mitochondria-targeting photosensitizer (Au-TPP) and a photodynamically activated CO-releasing molecule (FeCO), enabling the synergistic combination of photodynamic therapy (PDT) and CO therapy.

View Article and Find Full Text PDF

Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.

View Article and Find Full Text PDF

Nanomedicine targeting the Warburg effect: Advanced strategies for cancer therapy.

Crit Rev Oncol Hematol

September 2025

School of Life Sciences, Henan University, Kaifeng, Henan 475000, China. Electronic address:

Cancer remains the foremost cause of mortality globally, characterized by un-controlled cellular proliferation driven by oncogenic mutations and other factors. These mutations disrupt cellular homeostasis, leading to a spectrum of adverse physiological responses. A key feature of cellular metabolism in cancer is the Warburg effect, in which cancer cells preferentially rely on glycolysis for ATP production, even in the presence of oxygen, to meet their elevated metabolic demands.

View Article and Find Full Text PDF