Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heteroatom-doped porous carbon exhibit promising potential as supercapacitor electrodes, but the tradeoff between specific surface area (SSA) and heteroatom-doped level limits its excellent performance. In this work, the activation coupled with doping strategy to synthesize the pitch-based porous carbon (PPC). Different from single activation method to prepare microporous carbon, the PPC prepared by the coupling method has a hierarchical porous structure and high SSA (2020 m/g). Melamine acts as a self-sacrificing template, simultaneously realizing N and O dopings and cooperating with KOH to form hierarchical micro-mesopores, which enhance outstanding hydrophilicity. Attributed to the synergistic effect of activation mechanism and doping, PPC shows compatibility of different electrolyte systems and excellent high loading characteristics (220 F/g at 10 mg cm). In addition, the capacitance fluctuation is very small in extreme cases (0 to -40 °C), reflecting the excellent low-temperature performance. Therefore, the porous carbon prepared by the coupling method has a good micro-mesoporous structure and excellent electrochemical properties, which provides a new perspective for the high value-added utilization of low-cost pitch in supercapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.170DOI Listing

Publication Analysis

Top Keywords

porous carbon
12
carbon ppc
8
prepared coupling
8
coupling method
8
porous
5
self-sacrificing template-derived
4
template-derived n/o-doped
4
n/o-doped porous
4
porous carbons
4
carbons exceptional
4

Similar Publications

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF

Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.

View Article and Find Full Text PDF

A magnetic porous carbon material achieving rapid and convenient separation of volatile cinnamaldehyde in cinnamon.

J Chromatogr A

September 2025

State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:

Rapid and convenient enrichment and detection of volatile cinnamaldehyde (Cin) from a common herbal medicine, cinnamon, was achieved through a reliable MSPE-HPLC-DAD approach. The magnetic porous carbon material (Carbon-FeC/lignin) used for MSPE was prepared as follows. First, the metal organic framework (MIL-101-NH (Fe)) was synthesized using the solvothermal method.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF