98%
921
2 minutes
20
Nitroreductase (NTR) is an endogenous reductase overexpressed in hypoxic tumors, with its levels closely correlated to the degree of hypoxia. This correlation has significant clinical implications for the analysis of tumor hypoxia, as it allows for the indirect detection of nitroreductases. Due to their simplicity, noninvasive nature, and excellent spatiotemporal resolution, various fluorescence methods have been developed for the analysis of nitroreductase and tumor hypoxia. In this study, we present the design, synthesis, in vitro evaluation, and biological application of an NTR-activated fluorescent probe, F-NTR. Utilizing an oxanthrene fluorophore as the core component, F-NTR incorporates a 4-nitrobenzene recognition group. This innovative probe, which introduces a nitro group, demonstrates high selectivity and reactivity towards nitroreductase (NTR) due to its reducing properties. Furthermore, probe F-NTR is capable of accurately identifying hypoxic environments, which provides a basis for precise detection and localization of tumors. This work lays the groundwork for future investigations into cell metabolism, tumor metabolism, and the surgical management of solid tumors under hypoxic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.127804 | DOI Listing |
RSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora
Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.
View Article and Find Full Text PDFMol Immunol
September 2025
Department of Clinical Laboratory, The Affiliated Cancer Hospital of Xinjiang Medical University, Suzhou East Road No. 789, Urumqi, Xinjiang 830011, China. Electronic address:
Hypoxia plays a critical role in regulating the progression of non-small cell lung cancer (NSCLC) by modulating the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), important components of TIME, can be regulated by hypoxic conditions. Unfortunately, the molecular mechanisms by which hypoxia regulates TAMs in TIME to affect NSCLC progression has not been fully delineated.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Purpose: Tumor hypoxia is a key barrier to successful delivery and activity of anti-cancer agents. To tackle this, we designed hypoxia-responsive Au-PEI-Azo-mPEG nanoparticles (NPs) denoted as APAP NPs for targeted delivery of hypoxia-activated prodrug (HAP), tirapazamine (TPZ) to hypoxic breast cancer cells.
Methods: AuNPs were first synthesized.