Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the exponential expansion of the wireless industry, the demand for improved data network throughput, capacity, and coverage has become critical. Heterogeneous ultra-dense networks (UDNs) have emerged as a promising solution to meet these escalating requirements for high data rates and capacity. However, effectively deploying and managing small cells within UDNs presents significant challenges, particularly amidst varying traffic loads and the necessity for efficient resource utilization to minimize energy consumption, especially in environments with high interference levels. Inadequate deployment of small cells can lead to excessive interference, resulting in suboptimal profitability and inefficient energy resource utilization. Addressing these challenges demands innovative approaches such as data-driven deployment strategies and efficient energy efficient resource (EER) management for small cells. Leveraging data-driven methodologies, operators can optimize small cell deployment locations and configurations based on real-time traffic patterns and environmental conditions, thereby maximizing network performance while minimizing energy consumption. This research investigates the effectiveness of a data-driven mechanism in enhancing the average achievable data rate of small cells within Heterogeneous UDNs. Our proposed approach Data Driven Opportunistic Sleep Strategy (D-DOSS) employs stochastic geometry based mathematical model for the heterogeneous networks (HetNets) wireless network will assess the impact of strategic small cell deployment on network performance in respect of energy savings. The results from Monte Carlo simulations reveal that D-DOSS outperforms traditional strategies by improving energy efficiency (EE) by 20% and achieving a 15% higher average data rate. Additionally, D-DOSS achieves a coverage probability of 50% at a signal-to-interference-plus-noise ratio (SINR) threshold of 5 dB, significantly better than random sleep mode (RSM) and load aware sleep (LAS) strategies. Overall, our findings underscore the significance of data-driven deployment and management strategies in optimizing the performance of HetNets UDNs. By embracing such approaches, wireless operators can meet the escalating demands for high-speed data transmission while achieving greater EE and sustainability in wireless network operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784785PMC
http://dx.doi.org/10.7717/peerj-cs.2475DOI Listing

Publication Analysis

Top Keywords

small cells
16
small cell
12
management small
8
ultra-dense networks
8
meet escalating
8
efficient resource
8
resource utilization
8
energy consumption
8
data-driven deployment
8
cell deployment
8

Similar Publications

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Objective: Osimertinib (OSI) therapy, a cornerstone in treating non-small cell lung cancer (NSCLC), has been severely limited by rapidly developing acquired resistance. Inhibition of bypass activation using a combination strategy holds promise in overcoming this resistance. Biguanides, with excellent anti-tumor effects, have recently attracted much attention for this potential.

View Article and Find Full Text PDF

Tellurium-Nitrogen-Carbon Support Boosting Platinum Catalysis in High-Efficiency Proton Exchange Membrane Fuel Cells.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF