98%
921
2 minutes
20
Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families. Among them, porcine reproductive and respiratory syndrome virus, influenza A virus, herpes virus, adenovirus, and parvovirus were commonly identified. However, emerging viruses, such as Getah virus and porcine respiratory coronaviruses, were also characterized. Apart from viruses, a total of 164 bacterial species were identified, with suis, , , , and being frequently detected in high abundances. Notably, , , , and were also highly detected. Our further analysis revealed a complex interaction between the identified pathogens in swine RD. We also conducted retrospectively analyses to demonstrate the prevalent viral genotypes or bacterial serotypes associated with swine RD in China. Finally, we identified 48 ARGs, which conferred resistance to 13 predicted antimicrobial classes, and many of these ARGs were significantly associated with a substantial number of mobile genetic elements, including transposons (e.g., AIS1, A1353, 3, and Cau1) and plasmids (e.g., Col(BS512), Col(YC)]. These findings will contribute to further understanding the etiology, epidemiology, and microbial interactions in swine RD, and may also shed a light on the development of effective vaccines.IMPORTANCEIn this study, we identified viruses and bacteria from the lungs of pigs with RD in China at a nationwide farm scale by performing metatranscriptomic sequencing combined with metagenomic sequencing. We also demonstrated the complex interactions between different viral and/or bacterial species in swine RD. Our work provides a comprehensive knowledge about the etiology, epidemiology, and microbial interactions in swine RD and data reference for the research and development of effective vaccines against the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834406 | PMC |
http://dx.doi.org/10.1128/msystems.00025-25 | DOI Listing |
J Med Virol
September 2025
Department of Interdisciplinary Oncology, School of Medicine, Stanley S. Scott Cancer Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
Kaposi sarcoma (KS) remains a global health concern. In sub-Saharan Africa, where there is a high burden of HIV-1 infection, there is also a high prevalence of infection by the etiologic agent of KS, the KS-associated herpesvirus (KSHV). Despite the successes of antiretroviral treatment (ART), the burden of KS and other KSHV-associated malignancies among people living with HIV under ART remained high, stressing the need for a greater understanding of the immune response against KSHV infection.
View Article and Find Full Text PDFHepatitis E virus (HEV) has emerged as a major agent of acute viral hepatitis, with zoonotic genotype 4 (HEV-4) representing a public health concern in China. In this study, we integrated province-wide enhanced hepatitis E surveillance data and molecular profiling from Shandong Province of eastern China, 2019-2023, with the aim of elucidating the epidemiology, genetic diversity, and clinical correlations of autochthonous HEV infections. In total, 5826 cases were reported during the study period, with 72.
View Article and Find Full Text PDFJ Med Virol
September 2025
Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China.
Persistent high-risk human papillomavirus (HPV) infection is a leading cause of cervical cancer worldwide. While prophylactic vaccines exist, many women remain at risk due to prior exposure or limited access to vaccination. Current treatments focus on ablating visible lesions but often fail to clear the virus completely.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.
View Article and Find Full Text PDFCurr HIV Res
September 2025
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA.
Newborns represent only 1% of the population. Yet, HIV vertical transmissions represent 10% of all new infections globally, even though antiretroviral therapy (ART) has been shown to reduce the risk of vertical transmission to less than 2%. While vaccines still represent the most efficient and cost-effective intervention to eradicate new infections, HIV immunogens that can effectively elicit broad-spectrum protection are still at least a decade away.
View Article and Find Full Text PDF