Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization.

ISA Trans

Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, China; BNU-HKBU United International College Tangjiawan, Rd. JinTong 2000#, Zhuhai, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively. To guarantee consistent estimation on these parameters, an auxiliary block model is designed to predict the inner unmeasurable variables of the Wiener-Hammerstein system for computational iteration. Furthermore, two adaptive forgetting factors are designed to accelerate the convergence rates on estimating both coupled and uncoupled parameters. To overcome the issue of initial value sensitivity involved with the traditional recursive least-squares based algorithms for parameter estimation, a particle swarm optimization (PSO) algorithm based on two different excitation signals is given for initial value optimization of the proposed recursive identification algorithm. Meanwhile, the convergence property of the proposed algorithm is clarified with a proof. Finally, an illustrative example and experiments on a micro-positioning stage are performed to validate the merit of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2025.01.025DOI Listing

Publication Analysis

Top Keywords

initial optimization
12
recursive hierarchical
8
hierarchical parametric
8
parametric identification
8
wiener-hammerstein systems
8
based initial
8
optimization proposed
8
wiener-hammerstein system
8
system model
8
model parameters
8

Similar Publications

To optimize the deployment of Generative Artificial Intelligence in health care, it's essential for health care professionals (HCPs) to understand these technologies' capabilities and constraints. This study explores HCPs' initial impressions and experiences using ChatGPT, a Generative Pre-trained Transformer, in Pediatric Critical Care Units (PICUs). By conducting focus groups with a diverse set of HCPs, we aimed to assess their awareness, utilization, perceived benefits, and concerns about incorporating ChatGPT into their PICUs.

View Article and Find Full Text PDF

Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.

View Article and Find Full Text PDF

Stage-Dependent Effects of Moderate Treadmill Exercise on Cartilage Preservation and Subchondral Bone Remodeling in Mouse Osteoarthritis Progression.

Osteoarthritis Cartilage

September 2025

Center for Translational Medicine, Departments of Medicine and Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia

Objective: Exercise is widely advocated for osteoarthritis (OA) treatment; however, its effectiveness across disease stages, particularly in advanced OA, remains inconclusive. This study assessed the impact of treadmill exercise at distinct OA stages to determine optimal intervention timing.

Methods: Following validation of a moderate treadmill protocol, 96 male C57BL/6J mice underwent destabilization of the medial meniscus (DMM) surgery on the right knee and sham surgery on the left.

View Article and Find Full Text PDF

Background: Current neurovascular unit isolation requires processing brain microvascular endothelial cells (BMECs) and neurons from separate animals, preventing concurrent analysis of neurovascular crosstalk within identical genetic/physiological contexts.

New Methods: We developed an enzymatic digestion/bovine serum albumin density gradient technique that enables the simultaneous isolation of neural tissue and microvascular segments from individual mice. The neural tissue was filtered and centrifuged for primary cortical neuron culture on poly-L-lysine-coated plates.

View Article and Find Full Text PDF

Insight into the structural deterioration of biosynthesized holoferritin upon thermal treatment.

Int J Biol Macromol

September 2025

School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 23

Holoferritin is considered a promising iron supplement, yet its preparation is challenging due to low extraction efficiencies from natural sources and the potential for structural damage during in vitro mineralization. This study reported the in vivo biosynthesis of a highly stable holoferritin (bs-holoFt) in Escherichia coli a high iron-loading capacity (1213 Fe atoms/protein) and systematically characterized the impact of heat treatments (70-100 °C) on the protein's multi-level structure and dual functions. Results showed a clear, temperature-dependent degradation pathway, initiated by the loss of α-helical content (decreased from 77.

View Article and Find Full Text PDF