Electrochromic Fabric Device Based on Lamellar Polyaniline through Inkjet Printing.

Macromol Rapid Commun

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flexible electrochromic devices (FECD) have been widely applied in smart displays, wearable devices, and other fields, however, the synchronous improvement of electrochromic performance and flexibility is still a challenge. In this paper, a fabric-based FECD with "side-by-side" structure is designed and constructed through inkjet printing. The polyaniline nanosheets with good dispersion are used as ink and electrochromic material, and the self-developed semi-solid electrolyte based on polyvinyl alcohol serves as gel electrolyte. Benefiting from the improved structure and excellent performance of individual components, the obtained FECD achieves a reflectivity change of 22.9%, and maintains the electrochromic ability after bending for 1000 times. This shows the potential in the field of wearable smart clothing and other flexible textile displays.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202400945DOI Listing

Publication Analysis

Top Keywords

inkjet printing
8
electrochromic
5
electrochromic fabric
4
fabric device
4
device based
4
based lamellar
4
lamellar polyaniline
4
polyaniline inkjet
4
printing flexible
4
flexible electrochromic
4

Similar Publications

Achieving uniform perovskite thin films via inkjet printing remains a significant challenge due to the pervasive coffee-ring effect. Here, we present a solute engineering strategy that incorporates shape-anisotropic perovskite nanorods into a single-solvent ink formulation, effectively suppressing coffee-ring formation and yielding ultraflat films with an average roughness (Ra) as low as 0.226 nm.

View Article and Find Full Text PDF

Disposble electrochemical aptasensors: From design strategies, signal amplification, to applications and future perspectives.

Talanta

September 2025

Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:

Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.

View Article and Find Full Text PDF

Fabrication of Patterned Composite Microneedles via Inkjet Printing for Enhanced Drug Delivery.

Adv Healthc Mater

September 2025

Department of Smart Health Science and Technology, Kangwon National University (KNU), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.

Microneedle (MN) technology offers a minimally invasive, patient-friendly alternative to conventional hypodermic injections for dermal drug delivery. However, traditional micro-molding techniques are limited by single-material fabrication, involving labor-intensive processes, excessive material waste, and scalability issues, restricting broader therapeutic applications. To address these challenges, an inkjet printing method is implemented to fabricate multi-material MN patches using gelatin and gelatin methacryloyl (GelMA) hydrogels.

View Article and Find Full Text PDF

Scalable and high-throughput platforms to non-invasively record the Action Potentials (APs) of excitable cells are highly demanded to accelerate disease diagnosis and drug discovery. AP recordings are typically achieved with the invasive and low-throughput patch clamp technique. Non-invasive alternatives like planar multielectrode arrays cannot record APs without membrane poration, preventing accurate measurements of disease states and drug effects.

View Article and Find Full Text PDF

Quantitative imaging of alpha-emitting radionuclides is essential for accurate dosimetry in radiopharmaceutical therapy (RPT). This study evaluates the performance of inkjet-deposited Am sources imaged with the ionizing-radiation Quantum Imaging Detector (iQID), focusing on spatial resolution, substrate effects, and activity recovery. Line and areal phantom patterns were printed onto stainless steel, nickel, and gold-coated nickel substrates.

View Article and Find Full Text PDF