Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments. In the single-generation exposure experiment, TWP leachate showed the highest toxicity potential, followed by nano-TWP (<1 μm) and micro-TWP (1-20 μm). Both nano-TWP and leachate had negative effects on the lifespan and population of rotifers. High-concentration TWP leachate significantly shortened the reproductive period of rotifers, slowed down their swimming speed, and reduced the number of offspring. These negative effects were mainly attributed to the toxic mixture of nano-TWP with additives in the leachate. Furthermore, in multi-generation exposure experiments, the toxicity pattern showed a new trend: the toxicity of nano-TWP exceeded that of the leachate, while micro-TWP continued to maintain the lowest toxicity level. Continuous exposure to TWP exerted a significant negative impact on rotifer lifespan, and this effect increases cumulatively between generations. Notably, TWP was trans-generationally toxic to the lifespan of rotifers, and repeated exposure was more toxic than maternal exposure and continuous exposure. In addition, rotifers can ingest and accumulate TWP, and maternal transfer was another uptake pathway of TWP in rotifer offspring. This finding provided a new perspective for understanding the transmission mechanism of TWP in the marine food chain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2025.125635DOI Listing

Publication Analysis

Top Keywords

tire wear
8
wear particles
8
particles leachate
8
brachionus plicatilis
8
toxicity intergenerational
4
intergenerational accumulation
4
accumulation tire
4
leachate brachionus
4
plicatilis tire
4
twp
4

Similar Publications

The behavior of polycyclic aromatic hydrocarbons (PAHs) released from tire road wear particles (TRWPs) in human digestive fluids may pose a significant risk to human health. However, the current understanding of the release pattern and influencing factors of PAHs from TRWPs is still insufficient. In this study, the release characteristics of PAHs from UV-aging TRWPs (ATRWPs) were systematically investigated by in vitro digestive simulation experiments, release kinetic model fitting and control variable experiments.

View Article and Find Full Text PDF

Photochemical Production of Singlet Oxygen by Toronto Road Dust.

Environ Sci Technol

September 2025

Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.

Road dust, which consists of brake and tire wear, pavement particles, crustal material, semivolatile vehicle exhaust components, and natural organic matter, can contribute to both airborne particulate matter and urban runoff. To date, research has mainly focused on the health impact of road dust, but little work has been conducted to characterize its role as a reactive surface in the environment. Our group has previously shown that illuminated road dust is a source of singlet oxygen, an important environmental oxidant.

View Article and Find Full Text PDF

Nanoplastic Particle Emissions from Plastic Smoldering Combustion.

Environ Sci Technol

September 2025

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.

Atmospheric nanoplastic particles (NPPs) are an emerging environmental concern due to their potential adverse effects on human and ecosystem health. Many recently identified sources involve subjecting plastic materials to elevated temperatures; however, fundamental understanding of airborne emissions is limited. This study is the first systematic characterization of particle and volatile organic compound emissions from plastic smoldering combustion.

View Article and Find Full Text PDF

Tire wear particles (TWPs) are commonly found in soil environments; however, their impacts on soil ecosystems, particularly on wheat (Triticum aestivum L.) physiology, remain largely unexplored. This study aimed to investigate the effects of TWPs at concentrations of T0 (control), T1 (0.

View Article and Find Full Text PDF

Uptake of tire-wear derived compounds by lettuce grown in three soils.

Environ Int

August 2025

University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences EDGE, 1090 Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (PLENTY), 1090 Vienna, Austria. Electronic address: thilo.hofmann@univi

Tire-wear derived compounds have recently been detected in commercially grown leafy vegetables, raising concern about their uptake and accumulation in crops under realistic agricultural conditions. Lettuce (Lactuca sativa L.) cultivated in three agricultural soils, which varied in sand content (25-82 %), clay content (4-27 %), cation exchange capacity (11 meq/100 g-21 meq/100 g), and organic matter content (1.

View Article and Find Full Text PDF