Publications by authors named "Thilo Hofmann"

Tire-wear derived compounds have recently been detected in commercially grown leafy vegetables, raising concern about their uptake and accumulation in crops under realistic agricultural conditions. Lettuce (Lactuca sativa L.) cultivated in three agricultural soils, which varied in sand content (25-82 %), clay content (4-27 %), cation exchange capacity (11 meq/100 g-21 meq/100 g), and organic matter content (1.

View Article and Find Full Text PDF

The dynamic interactions between nanoplastics and environmental macromolecules, particularly the formation of eco-corona, have received growing attention. There is increasing evidence that eco-corona plays a critical role in determining the fate, transport, and impact of nanoplastics. In this study, we show that even a low mass of eco-corona formed on nanoplastics significantly affects the cotransport of nanoplastics and organic contaminants in porous media.

View Article and Find Full Text PDF

Stricter pesticide regulations are increasing the demand for environmentally acceptable alternatives with flavonoids seen as promising candidates for use as biopesticides. However, the current limited understanding of the environmental fate of flavonoids in soils restricts their assessment as active pesticide ingredients. To address this knowledge gap, we conducted laboratory incubation experiments with LC-MS-based quantification to determine the half-lives of 18 structurally related flavonoids in three agricultural soils.

View Article and Find Full Text PDF

Electrocatalytic water splitting is key to achieving UN Sustainable Development Goal 7, clean energy. However, electrocatalysts with increased activity and reasonable costs are needed. Ni-B, Ni-P, and Ni-B-P-based systems have recently been proposed as particularly promising candidates, but lacked either an active surface or sufficiently high B and P concentrations, which hindered their catalytic performance.

View Article and Find Full Text PDF

There is growing concern about rubber-derived compounds (RDCs), predominantly originating from tire and road wear particles. Other consumer products, including sports equipment, also contain RDCs, and human exposure to these compounds is of particular interest due to demonstrated toxicity to animal species. In this study, we investigated RDCs intentionally incorporated into climbing shoes for enhanced performance.

View Article and Find Full Text PDF

The potential use of thorium (Th) and uranium (U) as nuclear fuels underscores the importance of developing materials for their sustainable recovery. The production of Th and U requires the separation of these elements from rare-earth elements (REEs) as they often coexist in various feedstocks. Equally crucial is efficiently isolating scandium (Sc) from REEs, considering its high-value status and pivotal role in advanced alloy technologies.

View Article and Find Full Text PDF

Concerns about pollutants in the environment are increasing, with substances such as plastic additives drawing particular concern due to their potential harmful effects on organisms. This study investigates current levels of several contaminants in the Kiel Fjord. Some pose serious health risks to aquatic life.

View Article and Find Full Text PDF

The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.

View Article and Find Full Text PDF

Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed.

View Article and Find Full Text PDF

The recent discovery of guanidine-dependent riboswitches in many microbes raised interest in the biological function and metabolism of this nitrogen-rich compound. However, very little is known about the concentrations of guanidine in the environment. Several methods have been published for quantifying guanidine and guanidino compounds in human urine and blood, often relying on derivatization followed by fluorescence detection.

View Article and Find Full Text PDF

Increasing chemical pollution is a threat to sustainable water resources worldwide. Plastics and harmful additives released from plastics add to this burden and might pose a risk to aquatic organisms, and human health. Phthalates, which are common plasticizers and endocrine-disrupting chemicals, are released from polyvinyl chloride (PVC) microplastics and are a cause of concern.

View Article and Find Full Text PDF

Guanidine is a chemically stable nitrogen compound that is excreted in human urine and is widely used in manufacturing of plastics, as a flame retardant and as a component of propellants, and is well known as a protein denaturant in biochemistry. Guanidine occurs widely in nature and is used by several microorganisms as a nitrogen source, but microorganisms growing on guanidine as the only substrate have not yet been identified. Here we show that the complete ammonia oxidizer (comammox) Nitrospira inopinata and probably most other comammox microorganisms can grow on guanidine as the sole source of energy, reductant and nitrogen.

View Article and Find Full Text PDF

Foraminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera in the presence of heavy metals. Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium).

View Article and Find Full Text PDF

Tire materials (TMs) present a notable hazard due to their potential to release harmful chemicals and microplastics into the environment. They can infiltrate wastewater treatment plants, where their effects remain inadequately understood, raising concerns regarding their influence on treatment procedures. Thus, this study investigated the impact of TMs in wastewater (10, 25, 50 mg/L) on wastewater treatment efficiency, biomass morphology, and microbial composition in aerobic granular sludge (AGS) reactors.

View Article and Find Full Text PDF

This design study presents an analysis and abstraction of temporal and spatial data, and workflows in the domain of hydrogeology and the design and development of an interactive visualization prototype. Developed in close collaboration with a group of hydrogeological researchers, the interface supports them in data exploration, selection of data for their numerical model calibration, and communication of findings to their industry partners. We highlight both pitfalls and learnings of the iterative design and validation process and explore the role of rapid prototyping.

View Article and Find Full Text PDF

Phthalic acid esters (phthalates) are an important group of additives (plasticizers) to ensure the flexibility and stability especially of polyvinyl chloride (PVC) and to enable its processing. However, phthalates like di(2-ethylhexyl) phthalate (DEHP) are harmful for aquatic organisms due to their endocrine disrupting effects and toxicity. For the assessment of exposure concentrations, thorough understanding of leaching kinetics of phthalates from PVC (micro-) plastics into aqueous environments is necessary.

View Article and Find Full Text PDF

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far.

View Article and Find Full Text PDF

Remediation of residually contaminated soils remains a widespread problem. Biochar can immobilize polycyclic aromatic hydrocarbons (PAH). However, studies on its ability to immobilize PAH and N, S, and O substituted PAH (hetero-PAH) in real soils, and benchmarking with commercial activated carbon are missing.

View Article and Find Full Text PDF

Aquifers providing drinking water are increasingly threatened by emerging contaminants due to wastewater inputs from multiple sources. These inputs have to be identified, differentiated, and characterized to allow an accurate risk assessment and thus ensure the safety of drinking water through appropriate management. We hypothesize, that in climates with seasonal temperature variations, the sweetener acesulfame potassium (ACE) provides new pathways to study wastewater inputs to aquifers.

View Article and Find Full Text PDF

The persistence of the artificial sweetener acesulfame potassium (ACE) during wastewater treatment and subsequently in the aquatic environment has made it a widely used tracer of wastewater inputs to both surface water and groundwater. However, the recently observed biodegradation of ACE during wastewater treatment has questioned the validity of this application. In this study, we assessed the use of ACE not only as a marker of wastewater, but also as a transient wastewater tracer that allows both the calculation of mixing ratios and travel times through the aquifer as well as the calibration of transient groundwater flow and mass transport models.

View Article and Find Full Text PDF

The increasing use of gadolinium (Gd)-based contrast agents in magnetic resonance imaging and the recalcitrant behavior of Gd during municipal wastewater treatment have led to increased concentrations of the tracer in aquatic environments. These anthropogenic Gd emissions to wastewater and, subsequently, to surface and groundwater systems can be exploited to calculate groundwater travel times and mixing ratios, identify wastewater inputs, and calibrate groundwater models. However, analytical complexity, costs, and the time needed to directly measure anthropogenic inputs hinder the practical use of Gd.

View Article and Find Full Text PDF

Tire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), -phenyl-N'-(1,3-dimethylbutyl)--phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions.

View Article and Find Full Text PDF

Nanoplastics are an increasing environmental concern. In aquatic environments, nanoplastics will acquire an eco-corona by interacting with macromolecules (e.g.

View Article and Find Full Text PDF

Aquatic fate models and risk assessment require experimental information on the potential of contaminants to interact with riverine suspended particulate matter (SPM). While for dissolved contaminants partition or sorption coefficients are used, the underlying assumption of chemical equilibrium is invalid for particulate contaminants, such as engineered nanomaterials, incidental nanoparticles, micro- or nanoplastics. Their interactions with SPM are governed by physicochemical forces between contaminant-particle and SPM surfaces.

View Article and Find Full Text PDF

The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles.

View Article and Find Full Text PDF