Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The existing landslide monitoring methods are unable to accurately reflect the true deformation of the landslide body, and the use of a single SAR satellite, affected by its revisit cycle, still suffers from the limitation of insufficient temporal resolution for landslide monitoring. Therefore, this paper proposes a method for the dynamic reconstruction and evolutionary characteristic analysis of the Gaojiawan landslide's along-slope deformation based on ascending and descending orbit time-series InSAR observations using Kalman filtering. Initially, the method employs a gridded selection approach during the InSAR time-series processing, filtering coherent points based on the standard deviation of residual phases, thereby ensuring the density and quality of the extracted coherent points. Subsequently, the combination of ascending and descending orbit data converts the landslide's line of sight (LOS) deformation into along-slope deformation. Finally, the Kalman filtering method is utilized for dynamic reconstruction of the landslide deformation, and an analysis of the evolutionary characteristics of the landslide is conducted to explore its impact on transportation infrastructure, thereby significantly improving the temporal resolution and accuracy of landslide monitoring. To verify the feasibility of the algorithm, this paper selects the Gaojiawan landslide as a typical study area. Based on the ascending and descending Sentinel-1 SAR data from 2016 to 2023, it extracts the temporal series of slope body deformation to further explore its impact on the internal transportation infrastructure of the slope body. Experimental results show that the combination of ascending and descending SAR data and Kalman filtering has improved the time resolution of landslide monitoring to six days. It was found that two significant slips occurred in the slope body in January 2016 and June 2021, while other periods were relatively stable. Further discussion and analysis reveal that there is a difference in the slip deformation rate between the upper and lower parts of the slope body, and the shear stress caused by dislocation deformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687915PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316100PLOS

Publication Analysis

Top Keywords

kalman filtering
16
landslide monitoring
16
ascending descending
16
slope body
16
deformation
9
landslide
9
gaojiawan landslide
8
time-series insar
8
temporal resolution
8
resolution landslide
8

Similar Publications

Flexible and Stable Cycle-by-Cycle Phase-Locked Deep Brain Stimulation System Targeting Brain Oscillations in the Management of Movement Disorders.

Brain Stimul

September 2025

Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. Electronic address:

Background: Precisely timed brain stimulation, such as phase-locked deep brain stimulation (PLDBS), offers a promising approach to modulating dysfunctional neural networks by enhancing or suppressing specific oscillations. However, its clinical application has been hindered by the lack of user-friendly systems and the challenge of real-time phase estimation amid stimulation artifacts.

Material And Method: In this work, we developed a clinically translatable PLDBS framework that enables real-time, cycle-by-cycle stimulation using standard amplifiers and a computer-in-the-loop system.

View Article and Find Full Text PDF

State of charge (SOC) is extremely critical to the reliability of lithium-ion (Li-ion) battery utilization. In this study, a novel problem in which internal differences occurred in the battery package, causing uncertain SOC initialization of each battery unit, is solved by combining the variational theorem and the extended Kalman filter (EKF) algorithm. First, the importance of the initialized SOC setting of each unit in the battery package is proposed by determining the theoretical relationship between the initialization value and the current estimation result.

View Article and Find Full Text PDF

Hardware-enabled low latency rhythmic brain state tracking for brain stimulation applications.

Neuroimage

September 2025

Center for Bioelectric Interfaces, Higher School of Economics, Moscow, Russia; LLC "Life Improvement by Future Technologies Center", Moscow, Russia; AIRI, Artificial Intelligence Research Institute, Moscow, Russia. Electronic address:

Objective: Upcoming neuroscientific research will require bidirectional and context dependent interaction with nervous tissue. To facilitate the future neuroscientific discoveries we have created HarPULL, a genuinely real-time system for tracking oscillatory brain state.

Approach: The HarPULL technology ensures reliable, accurate and affordable real-time phase and amplitude tracking based on the state-space estimation framework operationalized by Kalman filtering.

View Article and Find Full Text PDF

Denoising and reconstruction of nonlinear dynamics using truncated reservoir computing.

Chaos

September 2025

Centre for Audio, Acoustics and Vibration (CAAV), School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.

Measurements acquired from distributed physical systems are often sparse and noisy. Therefore, signal processing and system identification tools are required to mitigate noise effects and reconstruct unobserved dynamics from limited sensor data. However, this process is particularly challenging because the fundamental equations governing the dynamics are largely unavailable in practice.

View Article and Find Full Text PDF

Comprehensive outdoor UWB dataset: Static and dynamic measurements in LOS/NLOS environments.

Sci Data

September 2025

Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ri, Seongdong-gu, Seoul, 04763, Republic of Korea.

This study provides a comprehensive outdoor ultra-wideband (UWB) dataset to examine the multipath effects in line-of-sight and non-line-of-sight (NLOS) environments for real-time localization. Specifically, the dataset comprises static and dynamic datasets designed to capture discrete multipaths affected by antenna height, obstructions, and time-varying environments. A static dataset varies the antenna height and distance to analyze the multipath interference on the received signal strength and ranging error with a UWB pair and walls to replicate NLOS environments.

View Article and Find Full Text PDF