A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Denoising and reconstruction of nonlinear dynamics using truncated reservoir computing. | LitMetric

Denoising and reconstruction of nonlinear dynamics using truncated reservoir computing.

Chaos

Centre for Audio, Acoustics and Vibration (CAAV), School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Measurements acquired from distributed physical systems are often sparse and noisy. Therefore, signal processing and system identification tools are required to mitigate noise effects and reconstruct unobserved dynamics from limited sensor data. However, this process is particularly challenging because the fundamental equations governing the dynamics are largely unavailable in practice. Reservoir Computing (RC) techniques have shown promise in efficiently simulating dynamical systems through an unstructured and efficient computation graph comprising a set of neurons with random connectivity. However, the potential of RC to operate in noisy regimes and distinguish noise from the primary smooth or non-smooth deterministic dynamics of the system has not been fully explored. This paper presents a novel RC method for noise filtering and reconstructing unobserved nonlinear dynamics, offering a novel learning protocol associated with hyperparameter optimization. The performance of the RC in terms of noise intensity, noise frequency content, and drastic shifts in dynamical parameters is studied in two illustrative examples involving the nonlinear dynamics of the Lorenz attractor and the adaptive exponential integrate-and-fire system. It is demonstrated that denoising performance improves by truncating redundant nodes and edges of the reservoir, as well as by properly optimizing hyperparameters, such as the leakage rate, spectral radius, input connectivity, and ridge regression parameter. Furthermore, the presented framework shows good generalization behavior when tested for reconstructing unseen and qualitatively different attractors. Compared to the extended Kalman filter, the presented RC framework yields competitive accuracy at low signal-to-noise ratios and high-frequency ranges.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0273505DOI Listing

Publication Analysis

Top Keywords

nonlinear dynamics
12
reservoir computing
8
presented framework
8
dynamics
6
noise
5
denoising reconstruction
4
reconstruction nonlinear
4
dynamics truncated
4
truncated reservoir
4
computing measurements
4

Similar Publications