High-Performance and Stable Perovskite/Organic Tandem Solar Cells Enabled by Interconnecting Layer Engineering.

ACS Nano

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells. Here, we propose an effective strategy to optimize the ICL by using [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) to modify the poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the hole transport layer (HTL) in the ICL. It is found that the coverage state of 2PACz on the PEDOT:PSS significantly affects the performance of PO-TSCs and can be regulated by adjusting the concentration of the 2PACz solution. The PEDOT:PSS/2PACz structure facilitates effective charge carrier extraction from the organic solar cells to the CRL. Herein, for the PO-TSCs, this strategy results in an efficient and balanced charge carrier recombination in the ICL and also allows a thinner PEDOT:PSS with reduced parasitic absorption. As a result, the PO-TSC achieves a power conversion efficiency (PCE) of 25.26%, much higher than the control device (PCE of 23.57%), and better stability. This work demonstrates an effective approach to achieving high-performance PO-TSCs through ICL engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c11888DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
solar cells
12
perovskite/organic tandem
8
tandem solar
8
interconnecting layer
8
performance po-tscs
8
transport layer
8
carrier extraction
8
carrier recombination
8
icl
6

Similar Publications

A donor-acceptor-donor type π-conjugated small molecule, , having an oligoether-functionalized azaisoindigo unit as an acceptor and triphenylamine units as donor groups was designed and synthesized. Its opto-electrochemical properties and charge transport applications were investigated. demonstrated p-type transport behavior with a maximum carrier mobility of 0.

View Article and Find Full Text PDF

Record-High Photoluminescence Efficiency and Excellent Scintillation in Two-Dimensional Diamine Hybrid Copper(I) Halides.

ACS Appl Mater Interfaces

September 2025

Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, environments and Materials, Guangxi University, Nanning 530004, China.

To date, Cu(I)-based metal halides with high photoluminescence quantum yields (PLQYs) have primarily focused on their zero-dimensional or one-dimensional structures, significantly reflecting the charge or carrier localization. Designing two-dimensional (2D) hybrid copper(I) halides remains a significant challenge for optoelectronic applications, particularly in simultaneously achieving high PLQY and exceptional structural stability. Here, we report a novel series of 2D hybrid Cu(I) halides, (TDMP)CuX (TDMP = 2,5-dimethylpiperazine and X = Cl, Br), synthesized through simple solution-cooling crystallization methods.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.

View Article and Find Full Text PDF

Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.

View Article and Find Full Text PDF