Growth Hormone-Releasing Peptide 2 May Be Associated With Decreased M1 Macrophage Production and Increased Histologic and Biomechanical Tendon-Bone Healing Properties in a Rat Rotator Cuff Tear Model.

Arthroscopy

Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To explore the potential of growth hormone-releasing peptide 2 (GHRP-2) for tendon-bone healing in a rat rotator cuff tear (RCT) model.

Methods: The impact of GHRP-2 on M1 macrophage polarization in vitro was determined using real-time polymerase chain reaction, Western blot, and immunofluorescence staining. GHRP-2 was then applied in a rat RCT model, and the healing of the tendon-bone interface was systemically evaluated by histologic staining, radiologic assessments, gait analysis, and biomechanical tests. M1 macrophage polarization at the tendon-bone interface was assessed by immunofluorescence staining.

Results: GHRP-2 was found to reduce the expression of Cd86, Nos2, and tnfa (all P < .01), suggesting inhibited M1 macrophage polarization in vitro. The in vivo experiments showed that the proportion of M1 macrophages was reduced both 2 and 4 weeks after surgery (P < .01), and the number of M1 was reduced 4 weeks after surgery (P < .01) at the tendon-bone interface. The in vivo experiments also showed that histologic scores and bone mineral density were increased by GHRP-2 at 8 weeks postsurgery (P < .01), suggesting improved healing of the tendon-bone interface. Furthermore, the GHRP-2 group showed a better biomechanical property at both 4 and 8 weeks postsurgery, including maximal failure load, stiffness, and tension (all P < .01), and better gait parameters at 8 weeks postsurgery, including mean area of the left front foot and mean intensity of the right front foot (all P < .05).

Conclusions: GHRP-2 may be associated with decreased M1 macrophage production and increased histologic and biomechanical tendon-bone healing properties in a rat RCT model.

Clinical Relevance: The present study might be a transitional study to show the efficacy of GHRP-2 in enhancing bone-tendon healing and reduce retear rate after rotator cuff repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arthro.2024.11.094DOI Listing

Publication Analysis

Top Keywords

tendon-bone interface
16
tendon-bone healing
12
rotator cuff
12
macrophage polarization
12
weeks postsurgery
12
growth hormone-releasing
8
hormone-releasing peptide
8
associated decreased
8
decreased macrophage
8
macrophage production
8

Similar Publications

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

Interfaces are everywhere in technology and engineering, from electronic circuit components to structural joints and biomedical implants. Understanding and controlling these interfaces is essential for advancing device efficiency, durability, and functionality. Nature has evolved intriguing strategies for joining soft and hard tissues through the enthesis, a specialized interface between tendon and bone that exhibits an unexpected compliant region critical for interface durability.

View Article and Find Full Text PDF

Background: The intact tendon-bone interface (TBI) consists of four histological layers-tendon, fibrocartilage, calcified fibrocartilage, and bone-that gradually merge into each other, making complete structural restoration after injury challenging. Osteoporosis poses a significant risk for rotator cuff tears (RCTs) and re-tears after arthroscopic rotator cuff repair (ARCR). Activating Leptin receptor (Lepr) mediated Stat3 signaling transduction facilitates the transcription of Runx2 and Sox9, respectively, and promotes osteogenesis and chondrogenesis.

View Article and Find Full Text PDF

Background: Eccentric mechanical stimulation (EMS) has been proposed as a potential therapy for tendon-bone injuries. Macrophages, as key immune cells, may play a significant role in promoting tendon-bone injury healing through mechanical stimulation, due to their polarization. This study aims to investigate the role of macrophages in rotator cuff injury repair promoted by EMS.

View Article and Find Full Text PDF

Background: The revision rate due to postoperative instability after anterior cruciate ligament reconstruction (ACLR) remains at 4% to 25%. The physiological mechanisms of tendon-bone healing involve intricate processes, particularly neovascularization and osseointegration at the bone tunnel interface. Currently, no standardized noninvasive method exists to comprehensively evaluate tendon-bone healing progression.

View Article and Find Full Text PDF