98%
921
2 minutes
20
Objectives: We characterized the molecular and mutational landscape of SARS-CoV-2 recombinant strains in Botswana.
Methods: We performed genomic, phylogenetic, and immunoinformatic analyses of 5254 near-complete genomes from 2020 to 2023. We assessed the presence of mutations of interested (MutOI) that may be associated with immune escape .
Results: We observed a few recombinant strains in Botswana, with the majority being descendants of Omicron (XBB*), except for XV and XM. Most recombinant sequences corresponded to transmission clusters. Most recombination events occurred within the receptor-binding domain (RDB) of the spike (S) protein. We identified 16 MutOI among different proteins, with the majority occurring at a very low global prevalence (<4.8 × 10⁵). We also observed S:Q474K, a MutOI in the RBD, that was predicted to escape human leukocyte antigen class I-mediated immune responses. Molecular surveillance is vital to inform early detection and response to potential variants with heightened immune and vaccine breakthrough properties.
Conclusions: These results underscore the need for continued molecular surveillance to map the evolutionary landscape of SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636131 | PMC |
http://dx.doi.org/10.1016/j.ijregi.2024.100484 | DOI Listing |
AIDS Res Hum Retroviruses
September 2025
Clinical Laboratory, The People's Hospital of Baoding, Baoding, China.
The emergence of CRF80_0107 resulted from recombination between co-circulating CRF01_AE and CRF07_BC genotypes. To date, no secondary recombinants involving CRF80_0107 as a parental strain have been documented in public sequence databases. Here, we report the identification and characterization of a novel HIV-1 CRF80_0107/B recombinant form isolated from a treatment-naïve men who have sex with men (MSM) individual in Baoding City, Hebei Province, China.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China.
infections represent a significant public health concern. Despite their clinical relevance, the genetic determinants underlying bacterial fitness and virulence remain incompletely characterized. In this study, we systematically identified genes involved in host adaptation by generating a transposon mutant library and integrating a infection model with transposon sequencing (Tn-seq) technology.
View Article and Find Full Text PDFVirus Evol
August 2025
College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan Research Center of the Basic Discipline for Cell Signaling, Hunan University, 52 Tianma Rd, Changsha, Hunan, 410012, China.
(γ-CoV) primarily infects poultry, wild birds, and marine mammals. The widespread distribution and circulation of γ-CoV in the ecological environment may lead to sustained transmission and economic loss. To better understand the diversity of γ-CoV in wild birds, we collected 482 wild-bird faecal samples from Yunnan, encompassing 14 bird species.
View Article and Find Full Text PDFInsect Sci
September 2025
Programa Operativo Moscas, SADER/SENASICA-IICA, Metapa de Domínguez, Chiapas, Mexico.
Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.
View Article and Find Full Text PDFMicrob Pathog
September 2025
School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang, 110036, China. Electronic address:
Mycoplasma gallisepticum (MG) is one of the main pathogens causing chronic respiratory diseases in chickens, which seriously affects the sustainable and healthy development of the poultry industry and leading to heavy economic losses. Therefore, we developed a safe, efficient, convenient, and low-cost MG oral vaccine. The vaccine is based on a recombinant yeast surface display system to compensate for the shortcomings of existing vaccines.
View Article and Find Full Text PDF