Revealing fitness and virulence determinants of hypervirulent during infection in using a transposon library.

Front Cell Infect Microbiol

State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

infections represent a significant public health concern. Despite their clinical relevance, the genetic determinants underlying bacterial fitness and virulence remain incompletely characterized. In this study, we systematically identified genes involved in host adaptation by generating a transposon mutant library and integrating a infection model with transposon sequencing (Tn-seq) technology. This approach yielded a comprehensive dataset of adaptation-deficient genes in the hypervirulent strain ATCC 43816. Using homologous recombination, we constructed gene deletion mutants of the carbohydrate phosphotransferase system enzyme I (PtsI) and the putative prolyl endopeptidase (GM2628), and verified their key roles in fitness and virulence through both and assays. In particular, defects exhibited lower dissemination and virulence in a murine pneumonia model, which cross-validates that the virulence determinants identified by the model are conserved across hosts. Our findings provide gene-level insights for the development of novel strategies to combat infections and indicate that is a cost-effective mammalian alternative for investigating bacterial pathogenicity. Going beyond the general knowledge that hypermucoviscosity (HMV) mediates high virulence, we observed that deficits in and led to HMV while decreasing virulence. This exemplifies that HMV does not always directly correlate with virulence, challenging its role as a virulence marker and underscoring the need for further investigation into non-HMV-mediated virulence mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411516PMC
http://dx.doi.org/10.3389/fcimb.2025.1643224DOI Listing

Publication Analysis

Top Keywords

fitness virulence
12
virulence
10
virulence determinants
8
revealing fitness
4
determinants hypervirulent
4
hypervirulent infection
4
infection transposon
4
transposon library
4
library infections
4
infections represent
4

Similar Publications

N460S in PB2 and I163T in nucleoprotein synergistically enhance the viral replication and pathogenicity of influenza B virus.

PLoS Pathog

September 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Influenza B viruses (IBVs), though often overshadowed by influenza A viruses (IAVs), remain a significant global public health concern, particularly during seasons when they predominate. However, the molecular mechanisms underlying IBV pathogenicity remain largely unknown. In this study, we identified two amino acid substitutions, PB2-N460S and NP-I163T, from IBV clinical isolates with distinct replication and pathogenicity profiles.

View Article and Find Full Text PDF

In the opportunistic pathogen , hyphal growth and virulence factor expression are regulated by environmental and chemical cues. Farnesol is a secreted autoregulatory molecule that represses filamentation. It is derived from farnesyl pyrophosphate (FPP), an ergosterol biosynthesis pathway intermediate.

View Article and Find Full Text PDF

Revealing fitness and virulence determinants of hypervirulent during infection in using a transposon library.

Front Cell Infect Microbiol

September 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China.

infections represent a significant public health concern. Despite their clinical relevance, the genetic determinants underlying bacterial fitness and virulence remain incompletely characterized. In this study, we systematically identified genes involved in host adaptation by generating a transposon mutant library and integrating a infection model with transposon sequencing (Tn-seq) technology.

View Article and Find Full Text PDF

Sensitivity assessment of 300 Cercospora beticola isolates collected from North Greece revealed that 38 % of the population was highly resistant to at least one of the demethylase inhibitors (DMIs) difenoconazole, epoxiconazole and flutriafol. Resistance factors greater than 50, 100 and 100 were calculated for the most resistant C. beticola isolates to flutriafol, epoxiconazole and difenoconazole, respectively.

View Article and Find Full Text PDF

Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.

View Article and Find Full Text PDF