Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-024-02985-6DOI Listing

Publication Analysis

Top Keywords

drug delivery
32
liquid crystals
20
thermotropic liquid
12
liquid crystal
12
drug
9
advanced drug
8
delivery
8
lyotropic thermotropic
8
liquid
8
crystal drug
8

Similar Publications

Medications for Opioid Use Disorder in County Jails - Outcomes after Release.

N Engl J Med

September 2025

Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst.

Background: In 2019, seven county correctional facilities (jails) in Massachusetts initiated pilot programs to provide all Food and Drug Administration-approved medications for opioid use disorder (MOUD).

Methods: This observational study used linked state data to examine postrelease MOUD receipt, overdose, death, and reincarceration among persons with probable opioid use disorder (OUD) in carceral settings who did or did not receive MOUD from these programs from September 1, 2019, through December 31, 2020. Log-binomial and proportional-hazards models were adjusted for propensity-score weights and baseline covariates that remained imbalanced after propensity-score weighting.

View Article and Find Full Text PDF

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Objective: Systematize the methodological decisions adopted in the budget impact analyses of the recommendation reports of the National Commission for the Incorporation of Technologies into the Unified Health System (Conitec) regarding drugs incorporated into the SUS (Brazilian Unified Health System) in the period from 2012 to 2024.

Methods: This is an exploratory, descriptive, retrospective study, based on document analysis of Conitec's technical recommendation reports with decisions on the incorporation of drugs published up to 2024. Information from the Budget Impact Analyses (BIA) was extracted and presented in terms of percentage, median and interquartile range.

View Article and Find Full Text PDF

Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.

View Article and Find Full Text PDF

Central nervous system (CNS) diseases, including neurodegenerative diseases, stroke, brain tumors, and others, result in poor quality of life and can cause substantial disability. Not all CNS diseases are amenable to surgical approaches, so drug development is important for disease treatment. Unfortunately, there are few drugs currently available for CNS diseases.

View Article and Find Full Text PDF