Strong Magneto-Chiroptical Effects through Introducing Chiral Transition-Metal Complex Cations to Lead Halide.

Angew Chem Int Ed Engl

Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interplay between chirality with magnetism can break both the space and time inversion symmetry and have wide applications in information storage, photodetectors, multiferroics and spintronics. Herein, we report the chiral transition-metal complex cation-based lead halide, R-CDPB and S-CDPB. In contrast with the traditional chiral metal halides with organic cations, a novel strategy for chirality transfer from the transition-metal complex cation to the lead halide framework is developed. The chiral complex cations directly participate the band structure and introduce the d-d transitions and tunable magneto-chiroptical effects in both the ultraviolet and full visible range into R-CDPB and S-CDPB. Most importantly, the coupling between magnetic moment of the complex cation and chiroptical properties is confirmed by the magneto-chiral dichroism. For the band-edge transition, the unprecedented modulation of +514 % for S-CDPB and -474 % for R-CDPB was achieved at -1.3 Tesla. Our findings demonstrate a novel strategy to combine chirality with magnetic moment, and provide a versatile material platform towards magneto-chiroptical and chiro-spintronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202415363DOI Listing

Publication Analysis

Top Keywords

transition-metal complex
12
lead halide
12
magneto-chiroptical effects
8
chiral transition-metal
8
complex cations
8
r-cdpb s-cdpb
8
novel strategy
8
complex cation
8
magnetic moment
8
complex
5

Similar Publications

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.

View Article and Find Full Text PDF

The present research reports the synthesis of poly-[ethylene oxide]-based composite films (500 μm) containing metal nanoparticles (NPs) [Ag ( ∼ 6 nm), Cu ( ∼ 25 nm), and Fe ( ∼ 35 nm)] as the mobile phase. The novelty of the study is in the corroboration of a plausible mechanism for the generation of metal NPs through green synthesis using herbal extracts of (Tea) and (Neem). Density functional theory (DFT) is used to optimize the phytoreductants present in both biosources, wherein the reducing and/or stabilizing functional entities are primarily hydroxyl groups (-OH).

View Article and Find Full Text PDF

To address palladium supply-demand challenges and conventional recovery inefficiencies, this study develops a lithium-mediated electrodeposition process for efficient palladium recycling from spent catalysts. Density functional theory calculations identified a controlled Pd→LiPd (Pd)→LiPdO (Pd) transformation pathway, and experimental verification confirmed that LiPd precursors underwent oxidative transformation into LiPdO with structural inheritance. LiPdO exhibited Pd-O coordination and underwent rapid dissolution in dilute hydrochloric acid.

View Article and Find Full Text PDF

A ratiometric dual-channel fluorescent probe for selective Zn/Cd sensing: Applications in food quality control, real-time monitoring in living cells, and mice.

Anal Chim Acta

November 2025

State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:

Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.

Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.

View Article and Find Full Text PDF