98%
921
2 minutes
20
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring. Photodynamic therapy (PDT), which generates reactive oxygen species (ROS) under laser irradiation, can be effectively combined with photothermal therapy (PTT) and chemodynamic therapy (CDT) to target non-muscle-invasive bladder tumors. In this study, Cu(OH)PO@PAA nanoparticles with photoacoustic (PA) imaging capabilities were utilized to explore their potential for precise intraoperative tumor identification and multimodal therapy.
Methods: The generation of ROS was detected to evaluate the potential of PDT and copper ion-induced CDT. Additionally, the PA imaging capability and biosafety of the nanoparticles were systematically evaluated. Finally, the anti-tumor efficacy of Cu(OH)PO@PAA-mediated CDT/PDT/PTT and the underlying mechanisms were assessed in vitro and in vivo.
Results: Cu(OH)PO@PAA could implement the CDT effect through a Cu-induced Fenton-like reaction and substantial consumption of glutathione (GSH). Besides, Cu(OH)PO@PAA could execute NIR-I-triggered PDT by generating O and thermal images showed that Cu(OH)PO@PAA has the potential to perform PTT through light-heat energy conversion. Cu(OH)PO@PAA possessed dose-dependent PA signal transduction ability. Without laser exposure, Cu(OH)PO@PAA weakened cell viability, induced apoptosis, and suppressed epithelial-mesenchymal transition (EMT) by exhibiting the CDT effect alone. However, after the introduction of PDT and/or PTT, the above anti-tumor effects were significantly enhanced.
Conclusion: This study systematically explores the combined anti-cancer mechanisms from the perspective of epithelial-mesenchymal transition, providing a theoretical and technical foundation for bladder cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412768 | PMC |
http://dx.doi.org/10.2147/IJN.S534840 | DOI Listing |
Pediatr Surg Int
September 2025
Pediatric Surgery Unit, Department of Women's and Children's Health, University of Padua, Via Nicolò Giustiniani, 35100, Padua, Italy.
Introduction: Brachytherapy has been used for the multimodal treatment of pediatric bladder-prostate rhabdomyosarcoma in the last two decades. The aim of this systematic review is to gather the current evidence about this innovative technique with a special focus on long-term outcomes.
Methods: According to PRISMA criteria, PubMed, Scopus, and Web of Science were searched for papers published between 2000 and 2022.
J Cancer Res Clin Oncol
September 2025
Cancer Treatment and Nuclear Cardiology Department, Al Azhar University, Cairo, Egypt.
Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDFCurr Opin Urol
September 2025
Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan.
Purpose Of Review: Nonmuscle-invasive bladder cancer (NMIBC) patients with BCG-unresponsive disease have limited treatment options beyond radical cystectomy. With ongoing BCG shortages and the urgent need for bladder-preserving alternatives, this review examines the emerging role of oncolytic virus therapy as a novel intravesical treatment approach for this challenging patient population.
Recent Findings: Multiple oncolytic viral platforms have entered clinical trials for NMIBC treatment, demonstrating promising efficacy and safety profiles.