Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/objectives: Omicron, the predominant variant of SARS-CoV-2, exhibits strong immune-evasive properties, leading to the reduced efficacy of existing vaccines. Consequently, the development of versatile vaccines is imperative. Intranasal mRNA vaccines offer convenient administration and have the potential to enhance mucosal immunity. However, delivering vaccines via the nasal mucosa requires overcoming complex physiological barriers. The aim of this study is to modify PEGylated lipids to enhance the mucosal immune efficacy of the vaccine.

Methods: The PEGylated lipid component of lipid nanoparticle (LNP) delivery vectors was modified with chitosan or mannose to generate novel LNPs that enhance vaccine adhesion or targeting on mucosal surfaces. The impact of the mRNA encoding the receptor-binding domain of Omicron BA.4/BA.5 on the immune response was examined.

Results: Compared to the unmodified LNP group, the IgG and IgA titers in the chitosan or mannose-modified LNP groups showed an increasing trend. The chitosan-modified group showed better effects. Notably, the PEGylated lipid with 1.5 mol% of chitosan modification produced high levels of IgG1 and IgG2a antibodies, promoting Th1/Th2 responses while also generating high levels of IgA, which can induce stronger cellular immunity, humoral immunity, and mucosal immunity.

Conclusions: The 1.5 mol% of chitosan-modified LNPs (mRNA-LNP-1.5CS) can serve as a safe and effective carrier for intranasal mRNA vaccines, offering a promising strategy for combating the Omicron variant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597600PMC
http://dx.doi.org/10.3390/pharmaceutics16111423DOI Listing

Publication Analysis

Top Keywords

mrna vaccines
12
mucosal immune
8
lipid nanoparticle
8
intranasal mrna
8
enhance mucosal
8
pegylated lipid
8
high levels
8
vaccines
6
mucosal
5
modified peg-lipids
4

Similar Publications

Sea perch is one of the most important fish species farmed in China. However, the frequent outbreak of viral diseases induced by sea perch iridovirus (SPIV) always caused high mortality and heavy economic losses in sea perch aquaculture. Up to now, no effective countermeasures against SPIV infection have been established.

View Article and Find Full Text PDF

A Safe and Broad-spectrum SARS-CoV-2 mRNA Vaccine with a New Delivery System for In-situ Expression.

Virol Sin

September 2025

State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.

Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.

View Article and Find Full Text PDF

For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF