98%
921
2 minutes
20
The quantitative evaluation of antimony (Sb) accumulation in rice has garnered significant attention due to the potential risks to human health. A pot experiment was conducted to investigate the essential nodes of Sb transfer in soil-rice system. Seven step extract results showed that during the flooding period, organic matter releasing was the primary factor contributing 14.1 % to the increase in Sb availability, while weakly crystallized Fe-Mn oxides and sulfides respectively accounted for 6.9 % and 1.42 %. During the drainage period, a notable increase in active Sb was observed, coinciding with decrease in Fe-Mn oxides and sulfides bond Sb. The migration rate constant of Sb from the root to the above-ground parts increased dramatically during the early flooding stage, being 2000 times higher than that in the mid-to-late stage. The shoot-to-grain migration rate constant remained low, at 1.07 × 10 d and 3.52 × 10 d during the flooding and drainage periods, respectively. Consequently, Sb accumulation amount in the grain (11.5 μg) was 2.2 times and 6.24 times lower than that in the roots and shoots, respectively. This study quantitatively evaluates the key processes controlling Sb transformation, uptake and translocation throughout different growth stages of the rice plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177721 | DOI Listing |
Environ Monit Assess
September 2025
Department of Geography, Rampurhat College, University of North Bengal, Darjeeling, 734013, India.
Catastrophic climate events such as floods significantly impact infrastructure, agriculture, and the economy. The lower Gandak River basin in India is particularly flood-prone, with Bihar experiencing annual losses of life and property due to massive flooding. Identifying flood-prone zones in this region is essential.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada. Electronic address:
Acid mine drainage (AMD) is a serious environmental problem at legacy and active mine sites around the world. Climate associated drought and rewetting events can increase the severity of AMD impacts through oxidation and release of stored metal(loid)s and acidity from contaminated sediments. The area surrounding Sudbury, Ontario, with its massive mining and smelting complexes, appears especially vulnerable to drought-driven effects.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Agronomical Engineering Department, Technical University of Cartagena (UPCT), 30202, Cartagena, Spain. Electronic address:
River systems, besides shaping their landscapes through the formation of Fluvisols, can also act as pathways for transporting significant pollutants, affecting both the river and its surrounding areas. One such pollutant is mercury (Hg). To assess the impact on sediments and adjacent riverbanks, including Fluvisols and their vegetation, the alluvial plains near Poland's most important river have been studied to understand this process and propose effective management measures.
View Article and Find Full Text PDFGels
August 2025
School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China.
To address the issues of poor thermal stability, inadequate salt tolerance, and environmental risks in conventional gel systems for the development of high-temperature, high-salinity heterogeneous reservoirs, a triple-synergy gel system comprising anionic polyacrylamide (APAM), polyethyleneimine (PEI), and phenolic resin (SMP) was developed in this study. The optimal synthesis parameters-APAM of 180 mg/L, PEI:SMP = 3:1, salinity of 150,000 ppm, and temperature of 110 °C-were determined via response surface methodology, and a time-viscosity model was established. Compared with existing binary systems, the proposed gel exhibited a mass retention rate of 93.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
Sylhet, located in the northeastern part of Bangladesh, is characterized by a unique topography and climatic conditions that make it susceptible to flash floods. The interplay of rapid urbanization and climatic variability has exacerbated these flood risks in recent years. Effective monitoring and planning of land use/land cover (LULC) are crucial strategies for mitigating these hazards.
View Article and Find Full Text PDF