98%
921
2 minutes
20
This study investigated the effects of differential modification of the structural flexibility of egg white protein (EWP) by different polyphenols, which in turn enhanced the oral processing properties and fat perception of EWP-based double network emulsion gel (DNEG). After modification with polyphenols, the skeleton of gel became more delicate, which improved the hardness and cohesion of DNEG. This transformation was attributed to the shift from hydrophobic interactions to hydrogen and covalent bonds. Notably, proanthocyanidins (PC) effect was better, which resulted in a 58.5 % increase in oral wettability and a more appropriate oral tribological performance (0.53). Besides, DNEG increased fatty taste perception via the "ball bearing" effect as a fat substitute in sausage. In summary, this study could enhance the refined design of gels and provide ideas for improving the fatty taste of low-fat, healthy foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142082 | DOI Listing |
Food Chem
August 2025
Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:
Yunnan coffee is praised for the sweet caramel aroma and slightly sour taste, but its key flavor compounds and aroma formation mechanisms remain unclear. In this study, the dynamic changes of coffee aroma, amino acids, free fatty acids, free sugars, chlorogenic acids and caffeine at different roasting degrees were investigated by SAFE-GC-MS and HPLC. Roasted coffees exhibited richer flavor profiles, especially caramel, nutty and roasted flavors, while the grassy, cereal and beany flavors of green beans (GB) were significantly diminished.
View Article and Find Full Text PDFFood Chem
September 2025
Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
The cooking process exerts a notable influence on the flavor characteristics of fish. E-nose, GC-MS, and GC-IMS technologies were utilized to investigate how three thermal processing methods (steaming, frying, and roasting) alter the volatile odors of paddy field carp (PFC). GC-MS and GC-IMS analyses indicated that the volatile compound compositions of steaming and raw samples were relatively similar.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany.
The Sensomics approach, including activity-guided fractionation and taste dilution analysis, was employed to identify the key compounds responsible for the bitter off-taste of sunflower press cake. A combination of liquid chromatography-tandem mass spectrometry, liquid chromatography-time-of-flight-mass spectrometry, one-/two-dimensional nuclear magnetic resonance spectroscopy, and dose-overthreshold factor calculation led to the identification of 9,12,13-trihydroxyoctadec-10-enoic acid, 9,10,11-trihydroxyoctadec-12-enoic acid, 11,12,13-trihydroxyoctadec-9-enoic acid, (10,12)-9-hydroxyoctadeca-10,12-dienoic acid, (10,12)-9-hydroxyoctadeca-10,12-dienoic acid, (9,11)-13-hydroxyoctadeca-9,11-dienoic acid, (9,11)-13-hydroxyoctadeca-9,11-dienoic acid, (9,11)-13-oxooctadeca-9,11-dienoic acid, α-linolenic acid, linoleic acid, oleic acid, 2-hydroxyoleic acid, palmitic acid, stearic acid, and novel pinocarveol β-d-apiofuranosyl-(1→6)-β-d-(4--caffeoyl) glucopyranoside as contributors to the bitterness of sunflower press cake. The findings provide valuable insights into the sensory challenges associated with using sunflower press cake in food applications and offer pathways to enhance its palatability and potential as a sustainable protein alternative to meet future protein demands.
View Article and Find Full Text PDFJ Food Sci
September 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
Liqueur koji-fermented foxtail millet beverages offer distinctive flavors and health benefits, but the interrelationships among flavor compounds, sensory properties, and antioxidant activity remain unelucidated. This study systematically mapped dynamic changes across a standardized 72 h fermentation using chromatographic, electronic sensory approaches, and antioxidant assays. Key results revealed glucose, lactic acid, and succinic acid as primary taste-active indicators through HPLC.
View Article and Find Full Text PDFFood Chem X
August 2025
School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
Previous research has demonstrated that notably enhances flavor stability with the cost of diminishing the inherent milk flavor in cheese, which may be rescued by the incorporation of . To investigate the effects of mixed fermentation with and on the formation of taste during the ripening period of kazak cheese, this study determined its sensory attributes, flavor precursors, volatile flavor components (VFCs), and Odorant Activity Value (OAV). The mixed fermentation increased the levels of organic acids, aromatic and umami amino acids, saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), ultimately intensifying the concentration of aldehydes and ketones.
View Article and Find Full Text PDF