Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The localized heating technique, which minimizes high-temperature impact on thermally sensitive components and reduces impurity dispersion during encapsulation, has become a focal point in MEMS packaging research. In this study, we propose a method for localized heating at specific positions and shapes. A localized heating device, based on distributed electric field control, is constructed, where a polymer droplet on the lower substrate electrode is driven into a liquid column under the influence of a distributed electric field generated between two parallel substrate electrodes. ITO substrate electrodes with various patterns are fabricated, ensuring the shape of the formed liquid column matches the pattern. Leveraging the principles of heat transfer, the temperature of the polymer droplet is regulated via a heating stage to enable targeted heating of defined shapes and areas. Experiments delve into the impact of driving parameters on heating time and efficiency, with results affirming the proposed method's capability to govern localized heating for particular regions and configurations accurately.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03875DOI Listing

Publication Analysis

Top Keywords

localized heating
20
heating
8
distributed electric
8
electric field
8
polymer droplet
8
liquid column
8
substrate electrodes
8
shape-controllable localized
4
heating method
4
method driven
4

Similar Publications

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF

Magnetic Implantable Devices and Materials for the Brain.

Small Methods

September 2025

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.

Understanding the brain's complexity and developing treatments for its disorders necessitates advanced neural technologies. Magnetic fields can deeply penetrate biological tissues-including bone and air-without significant attenuation, offering a compelling approach for wireless, bidirectional neural interfacing. This review explores the rapidly advancing field of magnetic implantable devices and materials designed for modulation and sensing of the brain.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF