98%
921
2 minutes
20
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate. Further, we correlate localized substrate thinning at high elongation areas with increases in the local trace resistance. These resistance increases create localized "hot spots" in the traces when high voltages and currents are applied to them. BNNT interlayers provide thermal protection to the underlying substrate and enable them to endure localized temperatures 1.5 times higher than those on bare substrates, as high currents are applied to the silver traces. Overall, this study demonstrates the use of BNNT interlayers as valuable thermal management materials to facilitate the development of more reliable and higher-performing conductive metal traces for use in 3D electronics and in-mold electronics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c07261 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.
View Article and Find Full Text PDFNat Commun
May 2024
Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8573, Japan.
Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs).
View Article and Find Full Text PDFMolecules
August 2021
School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
The molecular dynamics (MD) method is used to investigate the influence of the shielding gas on the dynamic behavior of the heterogeneous rotation transmission nano-system (RTS) built on carbon nanotubes (CNTs) and boron nitride nanotube (BNNT) in a helium environment. In the heterogeneous RTS, the inner CNT acts as a rotor, the middle BNNT serves as a motor, and the outer CNT functions as a stator. The rotor will be actuated to rotate by the motor due to the interlayer van der Waals effects and the end effects.
View Article and Find Full Text PDFNano Lett
September 2021
Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
Enhancing the thermal conductivity of polymer composites could improve their performance in applications requiring fast heat dissipation. While significant progress has been made, a long-standing issue is the contact thermal resistance between the nanofillers, which could play a critical role in the composite thermal properties. Through systematic studies of contact thermal resistance between individual boron nitride nanotubes (BNNTs) of different diameters, with and without a poly(vinylpyrrolidone) (PVP) interlayer, we show that the contact thermal resistance between bare BNNTs is largely determined by reflection of ballistic phonons.
View Article and Find Full Text PDF