Nitrogen uptake by Scenedesmus quadricauda and its responses over environmental factors.

Mar Pollut Bull

Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen is a vital nutrient for the growth of microalgae. Understanding the mechanism of nitrogen uptake by algae plays a crucial role in addressing and mitigating. Harmful algal blooms. This study compares the nitrogen uptake kinetics of Scenedesmus quadricauda on different nitrogen substrates: NO, NH, urea, and glycine. And the effects of four environmental factors on nitrogen uptake were also investigated. In the presence of four N substrates, Scenedesmus quadricauda took up four N substrates simultaneously. The order of uptake rates by Scenedesmus quadricauda was NH > urea > NO > glycine. Scenedesmus quadricauda exhibited a strong preference for urea and NH. Moreover, the environmental factors of temperature, pH, and light intensity had significant effects on nitrogen uptake rates. Although changes in environmental factors affected nitrogen uptake rates, they did not alter the uptake preference for different nitrogen sources. Higher temperatures (35 °C), higher pH (9), optimal light intensity (7200 lx) and turbulence intensity (100 rpm) conditions were associated with the higher nitrogen uptake rates. The findings contribute to a better understanding of algal nitrogen metabolism and provide a basis for predicting and managing algal bloom occurrences in aquatic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.117200DOI Listing

Publication Analysis

Top Keywords

nitrogen uptake
28
scenedesmus quadricauda
20
environmental factors
16
uptake rates
16
factors nitrogen
12
nitrogen
11
uptake
8
light intensity
8
scenedesmus
5
quadricauda
5

Similar Publications

This study investigates the bioavailability of humic nitrogen (humic-N) to algae through controlled bioassay experiments. Algae were able to utilize dissolved organic nitrogen (DON) from both humic acid (HA) and fulvic acid (FA), with bacterial co-culture enhancing uptake. Bioavailable nitrogen (BAN) from HA accounted for ~20 % of total nitrogen, whereas FA reached ~45 %, with bacterial presence further increasing FA utilization by about 6-7 %.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.

View Article and Find Full Text PDF

The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.

View Article and Find Full Text PDF

Exploring the synergy of CO nanobubbles and biochar as a hydroponic substrate for enhanced carbon and nutrient utilization with a comprehensive health risk assessment.

J Environ Manage

September 2025

Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Car

In this study, a deep-water culture (DWC) hydroponic system integrating carbon dioxide nanobubble (CNB) water and biochar (BC) was explored as a potential substrate for carbon and nutrient management. Lettuce seedlings were cultivated under varying substrates, including tap water (TW) and deionized water (DW) with and without CNB and BC at concentrations of 0.1 or 0.

View Article and Find Full Text PDF

Warming accelerates soil respiration and enhances the carbon sequestration in shrub and grass patches in Patagonian steppes.

Oecologia

September 2025

Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de La Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), 9000, Comodoro Rivadavia, Argentina.

Under the scenario of global warming, the response of carbon (C) fluxes of arid and semi-arid ecosystems, is still not well understood. A field warming experiment using open top chambers (OTCs) was conducted in a shrub-grass patagonian steppe to evaluate the effects on bare soil respiration (R), and ecosystem respiration (R), gross primary productivity (GPP) and net C exchange (NEE) during the growing season. Air (T) and soil (T) temperature, and soil available phosphorus changed significantly while there were no changes in soil moisture, soil organic carbon, total soil nitrogen and root biomass, after one-year of treatment.

View Article and Find Full Text PDF