98%
921
2 minutes
20
Induced pluripotent stem cells (iPSCs) have emerged as promising in vitro tools, providing a robust system for disease modelling and facilitating drug screening. Human iPSCs have been successfully differentiated into lung cells and three-dimensional lung spheroids or organoids. The lung is a multicellular complex organ that develops under the symphonic influence of the microenvironment. Here, we hypothesize that the generation of lung organoids in a controlled microenvironment (cmO) (oxygen and pressure) yields multicellular organoids with architectural complexity resembling the lung alveoli. iPSCs were differentiated into mature lung organoids following a stepwise protocol in an oxygen and pressure-controlled microenvironment. The organoids developed in the controlled microenvironment displayed complex alveolar architecture and stained for SFTPC, PDPN, and KRT5, indicating the presence of alveolar epithelial type II and type I cells, as well as basal cells. Moreover, gene and protein expression levels were also increased in the cmO. Furthermore, pathway analysis of proteomics revealed upregulation of lung development-specific pathways in the cmO compared to those growing in normal culture conditions. In summary, by using a controlled microenvironment, we established a complex multicellular lung organoid derived from iPSCs as a novel cellular model to study lung alveolar biology in both lung health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762634 | PMC |
http://dx.doi.org/10.1007/s12015-024-10789-1 | DOI Listing |
BMC Res Notes
September 2025
Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, No.55 West Zhongshan Avenue, Tianhe District, Guangzhou 510631, Guangdong, China.
While reactive oxygen species (ROS)-dependent chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold promise for cancer treatment, their efficacy remains constrained by tumor microenvironment (TME) barriers: glutathione (GSH) overexpression, insufficient HO supply, and hypoxia. To address these limitations, we engineered a Trojan horse-inspired MnO-shelled CaO nanoreactor (CaO/MnO-Ce6-PEG) by employing a sequential TME reprogramming strategy, triggering a cascading ROS storm for enhanced CDT and PDT. The outer MnO layer first depletes GSH through redox conversion, exposing the CaO core hydrolysis, and subsequently providing HO for CDT and O for ameliorating hypoxia to boost Ce6-mediated PDT.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,
Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.
View Article and Find Full Text PDFSmall Methods
September 2025
Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.
Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation.
View Article and Find Full Text PDF