98%
921
2 minutes
20
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker's yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481463 | PMC |
http://dx.doi.org/10.1186/s13068-024-02576-4 | DOI Listing |
PLoS Genet
September 2025
Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.
View Article and Find Full Text PDFEvolution
September 2025
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
What effect does evolutionary history have on the recovery of multicellularity? Khey and Travisano (2025) show that multicellularity can be recovered in all populations of their experimentally evolved Saccharomyces cerevisiae. However, the history of these cell lines changed the tempo and mode of adaptation in which these lines recovered multicellularity. These findings uncover further details on how evolutionary histories affect future trajectories and contribute another piece to the puzzle that is the predictability of evolution.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, United States.
Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
This study investigated the effects of adding Saccharomycopsis fibuligera (SF) and Pichia kudriavzevii (PK) on microbial communities and flavor substances in industrial xiaoqu light-flavor baijiu production. The result showed that the highest acidity was found in the control group (CK: Saccharomyces cerevisiae and Rhizopus) at the end of fermentation. SF and PK promoted the growth of Rhizopus while decreasing the abundance of S.
View Article and Find Full Text PDF